Chapter 14: Problem 73
The oxidation of \(\mathrm{SO}_{2}\) to \(\mathrm{SO}_{3}\) is catalyzed by \(\mathrm{NO}_{2}\). Thereaction proceeds as follows: $$ \begin{aligned} &\mathrm{NO}_{2}(g)+\mathrm{SO}_{2}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{SO}_{3}(g) \\ &2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) \end{aligned} $$ (a) Show that the two reactions can be summed to give the overall oxidation of \(\mathrm{SO}_{2}\) by \(\mathrm{O}_{2}\) to give \(\mathrm{SO}_{3}\). (Hint: The top reaction must be multiplied by a factor so the \(\mathrm{NO}\) and \(\mathrm{NO}_{2}\) cancel out.) (b) Why do we consider \(\mathrm{NO}_{2}\) a catalyst and not an intermediate in this reaction? (c) Is this an example of homogeneous catalysis or heterogeneous catalysis?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.