Chapter 14: Problem 72
(a) Most heterogeneous catalysts of importance are extremely finely divided solid materials. Why is particle size important? (b) What role does adsorption play in the action of a heterogeneous catalyst?
Chapter 14: Problem 72
(a) Most heterogeneous catalysts of importance are extremely finely divided solid materials. Why is particle size important? (b) What role does adsorption play in the action of a heterogeneous catalyst?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the following reaction between mercury(II) chloride and oxalate ion: \(2 \mathrm{HgCl}_{2}(a q)+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(a q)\) \(2 \mathrm{Cl}^{-}(a q)+2 \mathrm{CO}_{2}(g)+\mathrm{Hg}_{2} \mathrm{Cl}_{2}(s)\) The initial rate of this reaction was determined for several concentrations of \(\mathrm{HgCl}_{2}\) and \(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\), and the rate constant in units of \(\mathrm{s}^{-1}\). (c) Calculate the half-life of the reaction. (d) How long does it take for the absorbance to fall to \(0.100\) ? $$ \begin{array}{llll} \text { Experiment } & {\left[\mathrm{HgCl}_{2} \mathrm{~J}(\mathrm{M})\right.} & {\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right](M)} & \text { Rate }(\mathrm{M} / \mathrm{s}) \\ \hline 1 & 0.164 & 0.15 & 3.2 \times 10^{-5} \\ 2 & 0.164 & 0.45 & 2.9 \times 10^{-4} \\ 3 & 0.082 & 0.45 & 1.4 \times 10^{-4} \\ 4 & 0.246 & 0.15 & 4.8 \times 10^{-5} \\ \hline \end{array} $$ (a) What is the rate law for this reaction? (b) What is the value of the rate constant? (c) What is the reaction rate when the concentration of \(\mathrm{HgCl}_{2}\) is \(0.100 \mathrm{M}\) and that of \(\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2}\right)\) is \(0.25 \mathrm{M}\), if the temperature is the same as that used to obtain the data shown?
You have studied the gas-phase oxidation of \(\mathrm{HBr}\) by \(\mathrm{O}_{2}\) : $$ 4 \mathrm{HBr}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)+2 \mathrm{Br}_{2}(g) $$ You find the reaction to be first order with respect to \(\mathrm{HBr}\) and first order with respect to \(\mathrm{O}_{2}\). You propose the following mechanism: $$ \begin{aligned} \mathrm{HBr}(g)+\mathrm{O}_{2}(g) & \rightarrow \mathrm{HOOBr}(g) \\ \mathrm{HOOBr}(g)+\mathrm{HBr}(g) & \longrightarrow 2 \mathrm{HOBr}(g) \\ \mathrm{HOBr}(g)+\mathrm{HBr}(g) \longrightarrow & \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{Br}_{2}(g) \end{aligned} $$ (a) Indicate how the elementary reactions add to give the overall reaction. (Hint: You will need to multiply the coefficients of one of the equations by 2.) (b) Based on the rate law, which step is rate determining? (c) What are the intermediates in this mechanism? (d) If you are unable to detect HOBr or HOOBr among the products, does this disprove your mechanism?
NO catalyzes the decomposition of \(\mathrm{N}_{2} \mathrm{O}\), possibly by the following mechanism: $$ \begin{array}{r} \mathrm{NO}(\mathrm{g})+\mathrm{N}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{N}_{2}(g)+\mathrm{NO}_{2}(g) \\ 2 \mathrm{NO}_{2}(g) \longrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \end{array} $$ (a) What is the chemical equation for the overall reaction? Show how the two steps can be added to give the overall equation. (b) Why is NO considered a catalyst and not an intermediate? (c) If experiments show that during the decomposition of \(\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}\) does not accumulate in measurable quantities, does this rule out the proposed mechanism? If you think not, suggest what might be going on.
Explain why rate laws generally cannot be written from balanced equations. Under what circumstance is the rate law related directly to the balanced equation for a reaction?
Sucrose \(\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)\), which is commonly known as table sugar, reacts in dilute acid solutions to form two simpler sugars, glucose and fructose, both of which have the formula \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\) : At \(23^{\circ} \mathrm{C}\) and in \(0.5 \mathrm{M} \mathrm{HCl}\), the following data were obtained for the disappearance of sucrose: $$ \begin{array}{cl} \hline \text { Time }(\mathrm{min}) & \left.\mathrm{IC}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right](M) \\ \hline 0 & 0.316 \\ 39 & 0.274 \\ 80 & 0.238 \\ 140 & 0.190 \\ 210 & 0.146 \end{array} $$ (a) Is the reaction first order or second order with respect to \(\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right] ?\) (b) What is the value of the rate constant?
What do you think about this solution?
We value your feedback to improve our textbook solutions.