Chapter 14: Problem 70
You have studied the gas-phase oxidation of \(\mathrm{HBr}\) by \(\mathrm{O}_{2}\) : $$ 4 \mathrm{HBr}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)+2 \mathrm{Br}_{2}(g) $$ You find the reaction to be first order with respect to \(\mathrm{HBr}\) and first order with respect to \(\mathrm{O}_{2}\). You propose the following mechanism: $$ \begin{aligned} \mathrm{HBr}(g)+\mathrm{O}_{2}(g) & \rightarrow \mathrm{HOOBr}(g) \\ \mathrm{HOOBr}(g)+\mathrm{HBr}(g) & \longrightarrow 2 \mathrm{HOBr}(g) \\ \mathrm{HOBr}(g)+\mathrm{HBr}(g) \longrightarrow & \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{Br}_{2}(g) \end{aligned} $$ (a) Indicate how the elementary reactions add to give the overall reaction. (Hint: You will need to multiply the coefficients of one of the equations by 2.) (b) Based on the rate law, which step is rate determining? (c) What are the intermediates in this mechanism? (d) If you are unable to detect HOBr or HOOBr among the products, does this disprove your mechanism?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.