Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) What is meant by the term elementary reaction? (b) What is the difference between a unimolecular and a bimolecular elementary reaction? (c) What is a reaction mechanism?

Short Answer

Expert verified
(a) An elementary reaction is a single-step chemical process in which reactants directly change into products in one collision event, with a consistent reaction rate depending on the concentrations of reacting species. (b) A unimolecular elementary reaction involves the rearrangement or decomposition of a single molecule, with the reaction rate depending on the concentration of that reactant. A bimolecular elementary reaction involves a collision event between two reacting species, with the reaction rate depending on both reactants' concentrations. (c) A reaction mechanism is a series of elementary reactions that describe the pathway of a chemical reaction from reactants to products, providing a detailed description of molecular collisions, bond rearrangements, and energy changes during the reaction process.

Step by step solution

01

(a) Definition of Elementary Reaction)

An elementary reaction is a basic chemical process that represents a single step in a reaction mechanism. In an elementary reaction, reactants directly change into products in one collision event, with a consistent rate of reaction depending only on the concentrations of reacting species.
02

(b) Unimolecular vs Bimolecular Elementary Reactions)

A unimolecular elementary reaction involves the rearrangement or decomposition of a single molecule or reactant. The rate of a unimolecular reaction depends solely on the concentration of this single reactant. An example of a unimolecular reaction is the isomerization of an alkene, where one isomer transforms into another. A bimolecular elementary reaction, on the other hand, involves a collision event between two reacting species or molecules. The rate of a bimolecular reaction depends on the concentrations of both reactants. An example of a bimolecular reaction is a nucleophilic substitution reaction, in which a nucleophile replaces a leaving group on a molecular structure.
03

(c) Reaction Mechanism Definition)

A reaction mechanism is a series of elementary reactions or steps that describe the pathway of a chemical reaction, from reactants to products. It provides a detailed description of how molecular collisions, bond rearrangements, and energy changes occur during the reaction, helping chemists understand the underlying principles and kinetics of the reaction process. Reaction mechanisms may include one or multiple steps, with each step being an elementary reaction.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Consider the combustion of ethylene, \(\mathrm{C}_{2} \mathrm{H}_{4}(g)+\) \(3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) .\) If the concentration of \(\mathrm{C}_{2} \mathrm{H}_{4}\) is decreasing at the rate of \(0.025 \mathrm{M} / \mathrm{s}\), what are the rates of change in the concentrations of \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O} ?\) (b) The rate of decrease in \(\mathrm{N}_{2} \mathrm{H}_{4}\) partial pressure in a closed reaction vessel from the reaction \(\mathrm{N}_{2} \mathrm{H}_{4}(g)+\mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g)\) is 63 torr \(/ \mathrm{h}\). What are the rates of change of \(\mathrm{NH}_{3}\) partial pressure and total pressure in the vessel?

(a) The reaction \(\mathrm{H}_{2} \mathrm{O}_{2}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\frac{1}{2} \mathrm{O}_{2}(g)\), is first order. Near room temperature, the rate constant equals \(7.0 \times 10^{-4} \mathrm{~s}^{-1} .\) Calculate the half-life at this temperature. (b) At \(415^{\circ} \mathrm{C}\), \(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\) decomposes in the gas phase, \(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}(g) \longrightarrow \mathrm{CH}_{4}(g)+\mathrm{CO}(g) .\) If the reac- tion is first order with a half-life of \(56.3 \mathrm{~min}\) at this temperature, calculate the rate constant in \(\mathrm{s}^{-1}\).

The rate of the reaction \(\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow\) \(\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q)\) was measured at several temperatures, and the following data were collected: $$ \begin{array}{ll} \hline \text { Temperature }\left({ }^{\circ} \mathrm{C}\right) & k\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right) \\ \hline 15 & 0.0521 \\ 25 & 0.101 \\ 35 & 0.184 \\ 45 & 0.332 \end{array} $$ Using these data, graph \(\ln k\) versus \(1 / T\). Using your graph, determine the value of \(E_{g}\)

As described in Exercise \(14.37\), the decomposition of sulfuryl chloride \(\left(\mathrm{SO}_{2} \mathrm{Cl}_{2}\right)\) is a first-order process. The rate constant for the decomposition at \(660 \mathrm{~K}\) is \(4.5 \times 10^{-2} \mathrm{~s}^{-1}\). (a) If we begin with an initial \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\) pressure of 375 torr, what is the pressure of this substance after 65 s? (b) At what time will the pressure of \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\) decline to one-tenth its initial value?

The following mechanism has been proposed for the reaction of \(\mathrm{NO}\) with \(\mathrm{H}_{2}\) to form \(\mathrm{N}_{2} \mathrm{O}\) and \(\mathrm{H}_{2} \mathrm{O}\) : $$ \begin{aligned} &\mathrm{NO}(g)+\mathrm{NO}(g) \longrightarrow \mathrm{N}_{2} \mathrm{O}_{2}(g) \\ &\mathrm{N}_{2} \mathrm{O}_{2}(g)+\mathrm{H}_{2}(g) \longrightarrow \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{H}_{2} \mathrm{O}(g) \end{aligned} $$ (a) Show that the elementary reactions of the proposed mechanism add to provide a balanced equation for the reaction. (b) Write a rate law for each elementary reaction in the mechanism. (c) Identify any intermediates in the mechanism. (d) The observed rate law is rate \(=k[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]\). If the proposed mechanism is correct, what can we conclude about the relative speeds of the first and second reactions?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free