Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Based on their activation energies and energy changes and assuming that all collision factors are the same, which of the following reactions would be fastest and which would be slowest? Explain your answer. (a) \(E_{a}=45 \mathrm{~kJ} / \mathrm{mol} ; \Delta E=-25 \mathrm{~kJ} / \mathrm{mol}\) (b) \(E_{a}=35 \mathrm{~kJ} / \mathrm{mol} ; \Delta E=-10 \mathrm{~kJ} / \mathrm{mol}\) (c) \(E_{a}=55 \mathrm{~kJ} / \mathrm{mol} ; \Delta E=10 \mathrm{~kJ} / \mathrm{mol}\)

Short Answer

Expert verified
The fastest reaction will be (b) with an activation energy of \(35\, \mathrm{kJ/mol}\), while the slowest reaction will be (c) with an activation energy of \(55\, \mathrm{kJ/mol}\). This is because lower activation energy results in a faster reaction rate, and higher activation energy results in a slower reaction rate.

Step by step solution

01

Identify the activation energies

We are given the activation energies \(E_a\) for each reaction: (a) \(E_a = 45\, \mathrm{kJ/mol}\) (b) \(E_a = 35\, \mathrm{kJ/mol}\) (c) \(E_a = 55\, \mathrm{kJ/mol}\)
02

Compare the activation energies

Compare the activation energies to determine the relative rates of the reactions: - Reaction (a): \(E_a = 45\, \mathrm{kJ/mol}\) - Reaction (b): \(E_a = 35\, \mathrm{kJ/mol}\) - Reaction (c): \(E_a = 55\, \mathrm{kJ/mol}\) Based on this comparison, we can see that reaction (b) has the lowest activation energy, while reaction (c) has the highest activation energy.
03

Determine the fastest and slowest reactions

Since the reaction with the lowest activation energy proceeds the fastest, reaction (b) will be the fastest of the three. On the other hand, the reaction with the highest activation energy proceeds the slowest, which means that reaction (c) will be the slowest.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Dinitrogen pentoxide \(\left(\mathrm{N}_{2} \mathrm{O}_{5}\right)\) decomposes in chloroform as a solvent to yield \(\mathrm{NO}_{2}\) and \(\mathrm{O}_{2}\). The decomposition is first order with a rate constant at \(45^{\circ} \mathrm{C}\) of \(1.0 \times 10^{-5} \mathrm{~s}^{-1}\). Calculate the partial pressure of \(\mathrm{O}_{2}\) produced from \(1.00\) L of \(0.600 \mathrm{M} \mathrm{N}_{2} \mathrm{O}_{5}\) solution at \(45^{\circ} \mathrm{C}\) over a period of \(20.0 \mathrm{~h}\) if the gas is collected in a 10.0-L container. (Assume that the products do not dissolve in chloroform.)

You study the effect of temperature on the rate of two reactions and graph the natural logarithm of the rate constant for each reaction as a function of \(1 / T\). How do the two graphs compare (a) if the activation energy of the second reaction is higher than the activation energy of the first reaction but the two reactions have the same frequency factor, and (b) if the frequency factor of the second reaction is higher than the frequency factor of the first reaction but the two reactions have the same activation energy? [Section \(14.5\)

One of the many remarkable enzymes in the human body is carbonic anhydrase, which catalyzes the interconversion of carbonic acid with carbon dioxide and water. If it were not for this enzyme, the body could not rid itself rapidly enough of the \(\mathrm{CO}_{2}\) accumulated by cell metabolism. The enzyme catalyzes the dehydration (release to air) of up to \(10^{7} \mathrm{CO}_{2}\) molecules per second. Which components of this description correspond to the terms enzyme, substrate, and turnover number?

Many metallic catalysts, particularly the precious-metal ones, are often deposited as very thin films on a substance of high surface area per unit mass, such as alumina \(\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)\) or silica \(\left(\mathrm{SiO}_{2}\right) .\) (a) Why is this an effective way of utilizing the catalyst material? (b) How does the surface area affect the rate of reaction?

The following data were collected for the rate of disappearance of \(\mathrm{NO}\) in the reaction $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow$ \(2 \mathrm{NO}_{2}(g)\) \begin{tabular}{llll} \hline & & Initial Rate \\ Experiment & {\([\mathrm{NO}](M)\)} & {\(\left[\mathrm{O}_{2}\right](M)\)} & $(M / s)$ \\ \hline 1 & \(0.0126\) & \(0.0125\) & \(1.41 \times 10^{-2}\) \\ 2 & \(0.0252\) & \(0.0125\) & \(5.64 \times 10^{-2}\) \\ 3 & \(0.0252\) & \(0.0250\) & \(1.13 \times 10^{-1}\) \\ \hline \end{tabular} (a) What is the rate law for the reaction? (b) What are the units of the rate constant? (c) What is the average value of the rate constant calculated from the three data sets? (d) What is the rate of disappearance of NO when \([\mathrm{NO}]=0.0750 \mathrm{M}\) and $\left[\mathrm{O}_{2}\right]=0.0100 \mathrm{M} ?(\mathrm{e})$ What is the rate of disappearance of \(\mathrm{O}_{2}\) at the concentrations given in part (d)?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free