Chapter 14: Problem 36
(a) For a second-order reaction, what quantity, when graphed versus time, will yield a straight line? (b) How do the half-lives of first-order and second- order reactions differ?
Chapter 14: Problem 36
(a) For a second-order reaction, what quantity, when graphed versus time, will yield a straight line? (b) How do the half-lives of first-order and second- order reactions differ?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe oxidation of \(\mathrm{SO}_{2}\) to \(\mathrm{SO}_{3}\) is catalyzed by \(\mathrm{NO}_{2}\). Thereaction proceeds as follows: $$ \begin{aligned} &\mathrm{NO}_{2}(g)+\mathrm{SO}_{2}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{SO}_{3}(g) \\ &2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) \end{aligned} $$ (a) Show that the two reactions can be summed to give the overall oxidation of \(\mathrm{SO}_{2}\) by \(\mathrm{O}_{2}\) to give \(\mathrm{SO}_{3}\). (Hint: The top reaction must be multiplied by a factor so the \(\mathrm{NO}\) and \(\mathrm{NO}_{2}\) cancel out.) (b) Why do we consider \(\mathrm{NO}_{2}\) a catalyst and not an intermediate in this reaction? (c) Is this an example of homogeneous catalysis or heterogeneous catalysis?
(a) Define the following symbols that are encountered in rate equations: \([\mathrm{A}]_{0}, t_{1 / 2}[\mathrm{~A}]_{t}, k .(\mathrm{b})\) What quantity, when graphed versus time, will yield a straight line for a firstorder reaction?
(a) What is meant by the term molecularity? (b) Why are termolecular elementary reactions so rare? (c) What is an intermediate in a mechanism?
You perform a series of experiments for the reaction \(\mathrm{A} \longrightarrow \mathrm{B}+\mathrm{C}\) and find that the rate law has the form rate \(=k[\mathrm{~A}]^{x}\). Determine the value of \(x\) in each of the following cases: (a) There is no rate change when [A] is tripled. (b) The rate increases by a factor of 9 when [A] is tripled. (c) When [A] is doubled, the rate increases by a factor of 8 . [Section 14.3]
The following data were collected for the rate of disappearance of \(\mathrm{NO}\) in the reaction $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow$ \(2 \mathrm{NO}_{2}(g)\) \begin{tabular}{llll} \hline & & Initial Rate \\ Experiment & {\([\mathrm{NO}](M)\)} & {\(\left[\mathrm{O}_{2}\right](M)\)} & $(M / s)$ \\ \hline 1 & \(0.0126\) & \(0.0125\) & \(1.41 \times 10^{-2}\) \\ 2 & \(0.0252\) & \(0.0125\) & \(5.64 \times 10^{-2}\) \\ 3 & \(0.0252\) & \(0.0250\) & \(1.13 \times 10^{-1}\) \\ \hline \end{tabular} (a) What is the rate law for the reaction? (b) What are the units of the rate constant? (c) What is the average value of the rate constant calculated from the three data sets? (d) What is the rate of disappearance of NO when \([\mathrm{NO}]=0.0750 \mathrm{M}\) and $\left[\mathrm{O}_{2}\right]=0.0100 \mathrm{M} ?(\mathrm{e})$ What is the rate of disappearance of \(\mathrm{O}_{2}\) at the concentrations given in part (d)?
What do you think about this solution?
We value your feedback to improve our textbook solutions.