Chapter 14: Problem 32
The following data were collected for the rate of disappearance of \(\mathrm{NO}\) in the reaction $2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow$ \(2 \mathrm{NO}_{2}(g)\) \begin{tabular}{llll} \hline & & Initial Rate \\ Experiment & {\([\mathrm{NO}](M)\)} & {\(\left[\mathrm{O}_{2}\right](M)\)} & $(M / s)$ \\ \hline 1 & \(0.0126\) & \(0.0125\) & \(1.41 \times 10^{-2}\) \\ 2 & \(0.0252\) & \(0.0125\) & \(5.64 \times 10^{-2}\) \\ 3 & \(0.0252\) & \(0.0250\) & \(1.13 \times 10^{-1}\) \\ \hline \end{tabular} (a) What is the rate law for the reaction? (b) What are the units of the rate constant? (c) What is the average value of the rate constant calculated from the three data sets? (d) What is the rate of disappearance of NO when \([\mathrm{NO}]=0.0750 \mathrm{M}\) and $\left[\mathrm{O}_{2}\right]=0.0100 \mathrm{M} ?(\mathrm{e})$ What is the rate of disappearance of \(\mathrm{O}_{2}\) at the concentrations given in part (d)?