Chapter 14: Problem 110
Metals often form several cations with different charges. Cerium, for example, forms \(\mathrm{Ce}^{3+}\) and \(\mathrm{Ce}^{4+}\) ions, and thallium forms \(\mathrm{Tl}^{+}\) and \(\mathrm{Tl}^{3+}\) ions. Cerium and thallium ions react as follows: $$ 2 \mathrm{Ce}^{4+}(a q)+\mathrm{Tl}^{+}(a q) \longrightarrow 2 \mathrm{Ce}^{3+}(a q)+\mathrm{Tl}^{3+}(a q) $$ This reaction is very slow and is thought to occur in a single elementary step. The reaction is catalyzed by the addition of \(\mathrm{Mn}^{2+}(a q)\), according to the following mechanism: $$ \begin{aligned} \mathrm{Ce}^{4+}(a q)+\mathrm{Mn}^{2+}(a q) & \longrightarrow \mathrm{Ce}^{3+}(a q)+\mathrm{Mn}^{3+}(a q) \\ \mathrm{Ce}^{4+}(a q)+\mathrm{Mn}^{3+}(a q) & \longrightarrow \mathrm{Ce}^{3+}(a q)+\mathrm{Mn}^{4+}(a q) \\ \mathrm{Mn}^{4+}(a q)+\mathrm{Tl}^{+}(a q) & \longrightarrow \mathrm{Mn}^{2+}(a q)+\mathrm{Tl}^{3+}(a q) \end{aligned} $$ (a) Write the rate law for the uncatalyzed reaction. (b) What is unusual about the uncatalyzed reaction? Why might it be a slow reaction? (c) The rate for the catalyzed reaction is first order in \(\left[\mathrm{Ce}^{4+}\right]\) and first order in \(\left[\mathrm{Mn}^{2+}\right]\). Based on this rate law, which of the steps in the catalyzed mechanism is rate determining? (d) Use the available oxidation states of \(\mathrm{Mn}\) to comment on its special suitability to catalyze this reaction.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.