Chapter 14: Problem 105
The reaction between ethyl iodide and hydroxide ion in ethanol \(\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)\) solution, \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}(a l c)+\mathrm{OH}^{-}(a l c) \longrightarrow\) \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+\mathrm{I}^{-}(a l c)\), has an activation energy of \(86.8 \mathrm{~kJ} / \mathrm{mol}\) and a frequency factor of \(2.10 \times 10^{11} \mathrm{M}^{-1} \mathrm{~s}^{-1}\) (a) Predict the rate constant for the reaction at \(35^{\circ} \mathrm{C}\). (b) \(\mathrm{A}\) solution of KOH in ethanol is made up by dissolving \(0.335 \mathrm{~g} \mathrm{KOH}\) in ethanol to form \(250.0 \mathrm{~mL}\) of solution. Similarly, \(1.453 \mathrm{~g}\) of \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}\) is dissolved in ethanol to form \(250.0 \mathrm{~mL}\) of solution. Equal volumes of the two solutions are mixed. Assuming the reaction is first order in each reactant, what is the initial rate at \(35^{\circ} \mathrm{C} ?(\mathrm{c})\) Which reagent in the reaction is limiting, assuming the reaction proceeds to completion?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.