Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A saturated solution of sucrose \(\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)\) is made by dissolving excess table sugar in a flask of water. There are \(50 \mathrm{~g}\) of undissolved sucrose crystals at the bottom of the flask in contact with the saturated solution. The flask is stoppered and set aside. A year later a single large crystal of mass \(50 \mathrm{~g}\) is at the bottom of the flask. Explain how this experiment provides evidence for a dynamic equilibrium between the saturated solution and the undissolved solute.

Short Answer

Expert verified
The formation of a single large \(50 \mathrm{~g}\) sucrose crystal over a year can be explained by a dynamic equilibrium between the saturated solution and the undissolved solute. In this equilibrium, the rate of dissolution of smaller crystals is equal to the rate of precipitation of sucrose onto the larger crystal. The constant mass of undissolved sucrose throughout the process supports the existence of this dynamic equilibrium in the system.

Step by step solution

01

Understanding dynamic equilibrium

Dynamic equilibrium is a state where the rate of the forward process is equal to the rate of the reverse process. In the context of a saturated solution, this means that the rate at which solute particles dissolve in the solvent is equal to the rate at which particles from the solution precipitate to form solids.
02

Analyze changes in sucrose crystals and solute over time

In the given scenario, the saturated solution initially has \(50 \mathrm{~g}\) of undissolved sucrose crystals at the bottom of the flask. After a year, there is a single large crystal of mass \(50 \mathrm{~g}\) at the bottom of the flask. This indicates that sucrose crystals have dissolved and new crystals have formed over time, but the total mass of the undissolved sucrose remains constant throughout the process.
03

Explain the process in terms of dynamic equilibrium

The formation of the single large crystal over the course of a year can be explained through a dynamic equilibrium between the saturated solution and the undissolved solute. As time passes, the smaller crystals dissolve in the solution, while new crystals precipitate out of the solution and attach to the larger crystal. This forward (dissolving) and reverse (precipitation) process occurs simultaneously at equal rates, which indicates a dynamic equilibrium between the saturated solution and the undissolved solute. The fact that the mass of the undissolved sucrose remains constant over the year provides evidence for the existence of the dynamic equilibrium in the system.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The solubility of \(\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\) in water at \(20^{\circ} \mathrm{C}\) is \(70 \mathrm{~g}\) per \(100 \mathrm{~mL}\) of water. (a) \(\mathrm{ls}\) a \(1.22 \mathrm{M}\) solution of \(\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\) in water at \(20^{\circ} \mathrm{C}\) saturated, supersaturated, or unsaturated? (b) Given a solution of \(\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\) of unknown concentration, what experiment could you perform to determine whether the new solution is saturated, supersaturated, or unsaturated?

Two beakers are placed in a sealed box at \(25^{\circ} \mathrm{C}\). One beaker contains \(30.0 \mathrm{~mL}\) of a \(0.050 \mathrm{M}\) aqueous solution of a nonvolatile nonelectrolyte. The other beaker contains \(30.0 \mathrm{~mL}\) of a \(0.035 \mathrm{M}\) aqueous solution of \(\mathrm{NaCl}\). The water vapor from the two solutions reaches equilibrium. (a) In which beaker does the solution level rise, and in which one does it fall? (b) What are the volumes in the two beakers when equilibrium is attained, assuming ideal behavior?

A solution is made containing \(14.6 \mathrm{~g}\) of \(\mathrm{CH}_{3} \mathrm{OH}\) in \(184 \mathrm{~g}\) \(\mathrm{H}_{2} \mathrm{O}\). Calculate (a) the mole fraction of \(\mathrm{CH}_{3} \mathrm{OH}\), (b) the mass percent of \(\mathrm{CH}_{3} \mathrm{OH}\), (c) the molality of \(\mathrm{CH}_{3} \mathrm{OH}\).

Calculate the number of moles of solute present in each of the following aqueous solutions: (a) \(600 \mathrm{~mL}\) of \(0.250 \mathrm{M} \mathrm{SrBr}_{2}\), (b) \(86.4 \mathrm{~g}\) of \(0.180 \mathrm{~m} \mathrm{KCl}\), (c) \(124.0 \mathrm{~g}\) of a solution that is \(6.45 \%\) glucose \(\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)\) by mass.

The density of toluene \(\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)\) is \(0.867 \mathrm{~g} / \mathrm{mL}\), and the density of thiophene \(\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}\right)\) is \(1.065 \mathrm{~g} / \mathrm{mL}\). A solution is made by dissolving \(9.08 \mathrm{~g}\) of thiophene in \(250.0 \mathrm{~mL}\) of toluene. (a) Calculate the mole fraction of thiophene in the solution. (b) Calculate the molality of thiophene in the solution. (c) Assuming that the volumes of the solute and solvent are additive, what is the molarity of thiophene in the solution?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free