Chapter 13: Problem 84
Explain how each of the following factors helps determine the stability or instability of a colloidal dispersion: (a) particulate mass, (b) hydrophobic character, (c) charges on colloidal particles.
Chapter 13: Problem 84
Explain how each of the following factors helps determine the stability or instability of a colloidal dispersion: (a) particulate mass, (b) hydrophobic character, (c) charges on colloidal particles.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhen \(0.55 \mathrm{~g}\) of pure benzoic acid \(\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)\) is dissolved in \(32.0 \mathrm{~g}\) of benzene \(\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\), the freezing point of the solution is \(0.36^{\circ} \mathrm{C}\) lower than the freezing point value of \(5.5^{\circ} \mathrm{C}\) for the pure solvent. (a) Calculate the molecular weight of benzoic acid in benzene. (b) Use the structure of the solute to account for the observed value:
A "canned heat" product used to warm chafing dishes consists of a homogeneous mixture of ethanol \(\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)\) and paraffin that has an average formula of \(\mathrm{C}_{24} \mathrm{H}_{5}\). What mass of \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\) should be added to \(620 \mathrm{~kg}\) of the paraffin in formulating the mixture if the vapor pressure of ethanol at \(35^{\circ} \mathrm{C}\) over the mixture is to be 8 torr? The vapor pressure of pure ethanol at \(35^{\circ} \mathrm{C}\) is 100 torr.
(a) Calculate the vapor pressure of water above a solution prepared by adding \(22.5 \mathrm{~g}\) of lactose \(\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)\) to \(200.0 \mathrm{~g}\) of water at \(338 \mathrm{~K}\). (Vapor-pressure data for water are given in Appendix B.) (b) Calculate the mass of propylene glycol \(\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{2}\right)\) that must be added to \(0.340 \mathrm{~kg}\) of water to reduce the vapor pressure by \(2.88\) torr at \(40^{\circ} \mathrm{C}\).
Show that the vapor-pressure reduction, \(\Delta P_{\text {solvent }}\), associated with the addition of a nonvolatile solute to a volatile solvent is given by the equation \(\Delta P_{\text {solvent }}=\) \(X_{\text {solute }} \times P_{\text {solvent }}^{\circ}\)
The Henry's law constant for helium gas in water at \(30^{\circ} \mathrm{C}\) is \(3.7 \times 10^{-4} \mathrm{M} / \mathrm{atm}\) and the constant for \(\mathrm{N}_{2}\) at \(30^{\circ} \mathrm{C}\) is \(6.0 \times 10^{-4} \mathrm{M} / \mathrm{atm} .\) If the two gases are each present at \(1.5\) atm pressure, calculate the solubility of each gas.
What do you think about this solution?
We value your feedback to improve our textbook solutions.