Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A dilute aqueous solution of an organic compound soluble in water is formed by dissolving \(2.35 \mathrm{~g}\) of the compound in water to form \(0.250 \mathrm{~L}\) solution. The resulting solution has an osmotic pressure of \(0.605 \mathrm{~atm}\) at \(25^{\circ} \mathrm{C}\). Assuming that the organic compound is a nonelectrolyte, what is its molar mass?

Short Answer

Expert verified
The molar mass of the organic compound is \(38.3\mathrm{~g/mol}\).

Step by step solution

01

Calculate Temperature in Kelvin

Convert the given temperature from Celsius to Kelvin by adding 273.15 to the Celsius value: \(T = 25 + 273.15 = 298.15\mathrm{~K}\)
02

Calculate Molarity of the Solution

Use the osmotic pressure formula (π = MRT) to calculate the molarity (M) by rearranging it: \(M = \frac{π}{RT}\) Substitute the given values of π, R, and T into the formula to calculate the molarity: \(M = \frac{0.605\mathrm{~atm}}{(0.0821\mathrm{~L~atm/mol~K}) (298.15\mathrm{~K})} = 0.0247 \mathrm{~mol/L}\)
03

Calculate Grams per Mole

Use the formula to calculate grams per mole: \[M₂ = \frac{m}{MV}\] Substitute the mass (m), molarity (M), and volume (V) into the formula to calculate the molar mass: \(M₂ = \frac{2.35\mathrm{~g}}{(0.0247\mathrm{~mol/L})(0.250\mathrm{~L})} = 38.3\mathrm{~g/mol}\) Therefore, the molar mass of the organic compound is 38.3 g/mol.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Seawater contains \(3.4 \mathrm{~g}\) of salts for every liter of solution. Assuming that the solute consists entirely of \(\mathrm{NaCl}\) (over \(90 \%\) is), calculate the osmotic pressure of seawater at \(20^{\circ} \mathrm{C}\).

The density of acetonitrile \(\left(\mathrm{CH}_{3} \mathrm{CN}\right)\) is \(0.786 \mathrm{~g} / \mathrm{mL}\) and the density of methanol \(\left(\mathrm{CH}_{3} \mathrm{OH}\right)\) is \(0.791 \mathrm{~g} / \mathrm{mL}\). A solution is made by dissolving \(22.5 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{OH}\) in \(98.7 \mathrm{~mL}\) \(\mathrm{CH}_{3} \mathrm{CN}\). (a) What is the mole fraction of methanol in the solution? (b) What is the molality of the solution?

This figure shows the interaction of a cation with surrounding water molecules. Would you expect the energy of ion-solvent interaction to be greater for \(\mathrm{Na}^{+}\) or \(\mathrm{Li}^{+}\) ? Explain. [Section 13.1]

(a) Explain why carbonated beverages must be stored in sealed containers. (b) Once the beverage has been opened, why does it maintain more carbonation when refrigerated than at room temperature?

Describe how you would prepare each of the following aqueous solutions, starting with solid KBr: (a) \(0.75 \mathrm{~L}\) of \(1.5 \times 10^{-2} M \mathrm{KBr}\), (b) \(125 \mathrm{~g}\) of \(0.180 \mathrm{~m} \mathrm{KBr}\), (c) \(1.85 \mathrm{~L}\) of a solution that is \(12.0 \% \mathrm{KBr}\) by mass (the density of the solution is \(1.10 \mathrm{~g} / \mathrm{mL}\) ), (d) a \(0.150 \mathrm{M}\) solution of \(\mathrm{K} \mathrm{Br}\) that contains just enough \(\mathrm{KBr}\) to precipitate \(16.0 \mathrm{~g}\) of \(\mathrm{AgBr}\) from a solution containing \(0.480 \mathrm{~mol}\) of \(\mathrm{AgNO}_{3}\).

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free