Chapter 13: Problem 58
How does increasing the concentration of a nonvolatile solute in water affect the following properties: (a) vapor pressure, (b) freezing point, (c) boiling point; (d) osmotic pressure?
Chapter 13: Problem 58
How does increasing the concentration of a nonvolatile solute in water affect the following properties: (a) vapor pressure, (b) freezing point, (c) boiling point; (d) osmotic pressure?
All the tools & learning materials you need for study success - in one app.
Get started for freeCarbon disulfide \(\left(\mathrm{CS}_{2}\right.\) ) boils at \(46.30{ }^{\circ} \mathrm{C}\) and has a density of \(1.261 \mathrm{~g} / \mathrm{mL}\). (a) When \(0.250 \mathrm{~mol}\) of a nondissociating solute is dissolved in \(400.0 \mathrm{~mL}\) of \(\mathrm{CS}_{2}\), the solution boils at \(47.46^{\circ} \mathrm{C}\). What is the molal boiling-point-elevation constant for \(\mathrm{CS}_{2}\) ? (b) When \(5.39 \mathrm{~g}\) of a nondissociating unknown is dissolved in \(50.0 \mathrm{~mL}\) of \(\mathrm{CS}_{2}\), the solution boils at \(47.08^{\circ} \mathrm{C}\). What is the molecular weight of the unknown?
(a) What is an ideal solution? (b) The vapor pressure of pure water at \(60^{\circ} \mathrm{C}\) is 149 torr. The vapor pressure of water over a solution at \(60^{\circ} \mathrm{C}\) containing equal numbers of moles of water and ethylene glycol (a nonvolatile solute) is 67 torr. Is the solution ideal according to Raoult's law? Explain.
A sulfuric acid solution containing \(571.6 \mathrm{~g}\) of \(\mathrm{H}_{2} \mathrm{SO}_{4}\) per liter of solution has a density of \(1.329 \mathrm{~g} / \mathrm{cm}^{3} .\) Calculate (a) the mass percentage, (b) the mole fraction, (c) the molality, (d) the molarity of \(\mathrm{H}_{2} \mathrm{SO}_{4}\) in this solution.
Suppose you had a balloon made of some highly flexible semipermeable membrane. The balloon is filled com: pletely with a \(0.2 \mathrm{M}\) solution of some solute and is submerged in a \(0.1 \mathrm{M}\) solution of the same solute: Initially, the volume of solution in the balloon is \(0.25 \mathrm{~L} .\) Assuming the volume outside the semipermeable membrane is large, as the illustration shows, what would you expect for the solution volume inside the balloon once the system has come to equilibrium through osmosis? |Section 13.5]
In general, the attractive intermolecular forces between solvent and solute particles must be comparable or greater than solute-solute interactions for significant solubility to occur. Explain this statement in terms of the overall energetics of solution formation.
What do you think about this solution?
We value your feedback to improve our textbook solutions.