Chapter 13: Problem 52
Commercial concentrated aqueous ammonia is \(28 \% \mathrm{NH}_{3}\) by mass and has a density of \(0.90 \mathrm{~g} / \mathrm{mL}\). What is the molarity of this solution?
Chapter 13: Problem 52
Commercial concentrated aqueous ammonia is \(28 \% \mathrm{NH}_{3}\) by mass and has a density of \(0.90 \mathrm{~g} / \mathrm{mL}\). What is the molarity of this solution?
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that the vapor-pressure reduction, \(\Delta P_{\text {solvent }}\), associated with the addition of a nonvolatile solute to a volatile solvent is given by the equation \(\Delta P_{\text {solvent }}=\) \(X_{\text {solute }} \times P_{\text {solvent }}^{\circ}\)
Calculate the number of moles of solute present in each of the following solutions: (a) \(185 \mathrm{~mL}\) of \(1.50 \mathrm{M}\) \(\mathrm{HNO}_{3}(a q)\), (b) \(50.0 \mathrm{mg}\) of an aqueous solution that is \(1.25 \mathrm{~m} \mathrm{NaCl}\), (c) \(75.0 \mathrm{~g}\) of an aqueous solution that is \(1.50 \%\) sucrose \(\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)\) by mass.
Brass is a substitutional alloy consisting of a solution of copper and zinc. A particular sample of red brass consisting of \(80.0 \%\) Cu and \(20.0 \%\) Zn by mass has a density of \(8750 \mathrm{~kg} / \mathrm{m}^{3}\). (a) What is the molality of \(\mathrm{Zn}\) in the solid solution? (b) What is the molarity of \(\mathrm{Zn}\) in the solution?
Indicate whether each of the following is a hydrophilic or a hydrophobic colloid: (a) butterfat in homogenized milk, (b) hemoglobin in blood, (c) vegetable oil in a salad dressing, (d) colloidal gold particles in water.
(a) What is an ideal solution? (b) The vapor pressure of pure water at \(60^{\circ} \mathrm{C}\) is 149 torr. The vapor pressure of water over a solution at \(60^{\circ} \mathrm{C}\) containing equal numbers of moles of water and ethylene glycol (a nonvolatile solute) is 67 torr. Is the solution ideal according to Raoult's law? Explain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.