Chapter 13: Problem 2
Why do ionic substances with higher lattice energies tend to be less soluble in water than those with lower lattice energies? [Section 13.1]
Chapter 13: Problem 2
Why do ionic substances with higher lattice energies tend to be less soluble in water than those with lower lattice energies? [Section 13.1]
All the tools & learning materials you need for study success - in one app.
Get started for freeA lithium salt used in lubricating grease has the formula \(\mathrm{LiC}_{n} \mathrm{H}_{2 n+1} \mathrm{O}_{2}\). The salt is soluble in water to the extent of \(0.036 \mathrm{~g}\) per \(100 \mathrm{~g}\) of water at \(25^{\circ} \mathrm{C}\). The osmotic pressure of this solution is found to be \(57.1\) torr. Assuming that molality and molarity in such a dilute solution are the same and that the lithium salt is completely dissociated in the solution, determine an appropriate value of \(n\) in the formula for the salt.
At \(35^{\circ} \mathrm{C}\) the vapor pressure of acetone, \(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\), is 360 torr, and that of chloroform, \(\mathrm{CHCl}_{3}\), is 300 torr. Acetone and chloroform can form weak hydrogen bonds between one another as follows: A solution composed of an equal number of moles of acetone and chloroform has a vapor pressure of 250 torr at \(35^{\circ} \mathrm{C}\). (a) What would be the vapor pressure of the solution if it exhibited ideal behavior? (b) Use the existence of hydrogen bonds between acetone and chloroform molecules to explain the deviation from ideal behavior. (c) Based on the behavior of the solution, predict whether the mixing of acetone and chloroform is an exothermic \(\left(\Delta H_{\mathrm{soln}}<0\right)\) or endothermic \(\left(\Delta H_{\text {soln }}>0\right)\) process.
Calculate the number of moles of solute present in each of the following aqueous solutions: (a) \(600 \mathrm{~mL}\) of \(0.250 \mathrm{M} \mathrm{SrBr}_{2}\), (b) \(86.4 \mathrm{~g}\) of \(0.180 \mathrm{~m} \mathrm{KCl}\), (c) \(124.0 \mathrm{~g}\) of a solution that is \(6.45 \%\) glucose \(\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)\) by mass.
A solution contains \(0.115 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\) and an unknown number of moles of sodium chloride. The vapor pressure of the solution at \(30^{\circ} \mathrm{C}\) is \(25.7\) torr. The vapor pressure of pure water at this temperature is \(31.8\) torr. Calculate the number of moles of sodium chloride in the solution. (Hint: remember that sodium chloride is a strong electrolyte.)
(a) Explain why carbonated beverages must be stored in sealed containers. (b) Once the beverage has been opened, why does it maintain more carbonation when refrigerated than at room temperature?
What do you think about this solution?
We value your feedback to improve our textbook solutions.