Chapter 11: Problem 55
Sketch a generic phase diagram for a substance that has a more dense solid phase than a liquid phase. Label all regions, lines, and points.
Chapter 11: Problem 55
Sketch a generic phase diagram for a substance that has a more dense solid phase than a liquid phase. Label all regions, lines, and points.
All the tools & learning materials you need for study success - in one app.
Get started for free(a) Distinguish between adhesive forces and cohesive forces. (b) What adhesive and cohesive forces are involved when a paper towel absorbs water? (c) Explain the cause for the U-shaped meniscus formed when water is in a glass tube.
Butane and 2 -methylpropane, whose space-filling models are shown, are both nonpolar and have the same molecular formula, yet butane has the higher boiling point \(\left(-0.5^{\circ} \mathrm{C}\right.\) compared to \(\left.-11.7{ }^{\circ} \mathrm{C}\right)\). Explain.
Name the phase transition in each of the following situations, and indicate whether it is exothermic or endothermic: (a) Bromine vapor turns to bromine liquid as it is cooled. (b) Crystals of iodine disappear from an evaporating dish as they stand in a fume hood. (c) Rubbing alcohol in an open container slowly disappears. (d) Molten lava from a volcano turns into solid rock.
The vapor pressure of a volatile liquid can be determined by slowly bubbling a known volume of gas through it at a known temperature and pressure. In an experiment, \(5.00 \mathrm{~L}\) of \(\mathrm{N}_{2}\) gas is passed through \(7.2146 \mathrm{~g}\) of liquid benzene, \(\mathrm{C}_{6} \mathrm{H}_{6}\), at \(26.0{ }^{\circ} \mathrm{C}\). The liquid remaining after the experiment weighs \(5.1493 \mathrm{~g}\). Assuming that the gas becomes saturated with benzene vapor and that the total gas volume and temperature remain constant, what is the vapor pressure of the benzene in torr?
The table shown here lists the molar heats of vaporization for several organic compounds. Use specific examples from this list to illustrate how the heat of vaporization varies with (a) molar mass, (b) molecular shape, (c) molecular polarity, (d) hydrogen-bonding interactions. Explain these comparisons in terms of the nature of the intermolecular forces at work. You may find it helpful to draw out the structural formula for each compound.) $$ \begin{array}{ll} \hline \text { Compound } & \begin{array}{l} \text { Heat of } \\ \text { Vaporization (kJ/mol) } \end{array} \\ \hline \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3} & 19.0 \\ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} & 27.6 \\ \mathrm{CH}_{3} \mathrm{CHBrCH}_{3} & 31.8 \\ \mathrm{CH}_{3} \mathrm{COCH}_{3} & 32.0 \\ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} & 33.6 \\ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} & 47.3 \\ \hline \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.