Chapter 11: Problem 40
The fluorocarbon compound \(\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}\) has a normal boiling point of \(47.6^{\circ} \mathrm{C}\). The specific heats of \(\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}(l)\) and \(\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}(\mathrm{~g})\) are \(0.91 \mathrm{~J} / \mathrm{g}-\mathrm{K}\) and \(0.67 \mathrm{~J} / \mathrm{g}-\mathrm{K}\), respectively. The heat of vaporization for the compound is \(27.49 \mathrm{~kJ} / \mathrm{mol}\). Calculate the heat required to convert \(50.0 \mathrm{~g}\) of \(\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}\) from a liquid at \(10.00^{\circ} \mathrm{C}\) to a gas at \(85.00^{\circ} \mathrm{C}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.