Chapter 11: Problem 35
Explain why the heat of fusion of any substance is generally lower than its heat of vaporization.
Chapter 11: Problem 35
Explain why the heat of fusion of any substance is generally lower than its heat of vaporization.
All the tools & learning materials you need for study success - in one app.
Get started for freeUsing the following list of normal boiling points for a series of hydrocarbons, estimate the normal boiling point for octane, \(\mathrm{C}_{8} \mathrm{H}_{18}:\) propane \(\left(\mathrm{C}_{3} \mathrm{H}_{8},-42.1{ }^{\circ} \mathrm{C}\right)\), bu- tane \(\left(\mathrm{C}_{4} \mathrm{H}_{10},-0.5^{\circ} \mathrm{C}\right)\), pentane \(\left(\mathrm{C}_{5} \mathrm{H}_{12}, 36.1^{\circ} \mathrm{C}\right)\), hexane \(\left(\mathrm{C}_{6} \mathrm{H}_{14}, 68.7^{\circ} \mathrm{C}\right)\), heptane \(\left(\mathrm{C}_{7} \mathrm{H}_{16}, 98.4{ }^{\circ} \mathrm{C}\right)\). Explain the trend in the boiling points.
What type of intermolecular force accounts for the following differences in each case? (a) \(\mathrm{CH}_{3} \mathrm{OH}\) boils at \(65^{\circ} \mathrm{C}, \mathrm{CH}_{3} \mathrm{SH}\) boils at \(6{ }^{\circ} \mathrm{C}\). (b) Xe is liquid at atmospheric pressure and \(120 \mathrm{~K}\), whereas Ar is a gas. (c) \(\mathrm{Kr}\), atomic weight 84 , boils at \(120.9 \mathrm{~K}\), whereas \(\mathrm{Cl}_{2}\), molecular weight about 71 , boils at \(238 \mathrm{~K}\). (d) Acetone boils at \(56{ }^{\circ} \mathrm{C}\), whereas 2 -methylpropane boils at \(-12{ }^{\circ} \mathrm{C}\).
Ethanol \(\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)\) melts at \(-114^{\circ} \mathrm{C}\) and boils at \(78^{\circ} \mathrm{C}\). Its density is \(0.789 \mathrm{~g} / \mathrm{mL}\). The enthalpy of fusion of ethanol is \(5.02 \mathrm{~kJ} / \mathrm{mol}\), and its enthalpy of vaporization is \(38.56 \mathrm{~kJ} / \mathrm{mol}\). The specific heats of solid and liquid ethanol are \(0.97 \mathrm{~J} / \mathrm{g}-\mathrm{K}\) and \(2.3 \mathrm{~J} / \mathrm{g}-\mathrm{K}\), respectively. (a) How much heat is required to convert \(25.0 \mathrm{~g}\) of ethanol at \(25^{\circ} \mathrm{C}\) to the vapor phase at \(78^{\circ} \mathrm{C} ?\) (b) How much heat is required to convert \(5.00 \mathrm{~L}\) of ethanol at \(-140^{\circ} \mathrm{C}\) to the vapor phase at \(78^{\circ} \mathrm{C}\) ?
Which member of the following pairs has the larger London dispersion forces: (a) \(\mathrm{H}_{2} \mathrm{O}\) or \(\mathrm{H}_{2} \mathrm{~S}\), (b) \(\mathrm{CO}_{2}\) or \(\mathrm{CO}\), (c) \(\mathrm{SiH}_{4}\) or \(\mathrm{GeH}_{4} ?\)
(a) What atoms must a molecule contain to participate in hydrogen bonding with other molecules of the same kind? (b) Which of the following molecules can form hydrogen bonds with other molecules of the same kind: \(\mathrm{CH}_{3} \mathrm{~F}, \mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{Br} ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.