Chapter 10: Problem 86
Briefly explain the significance of the constants \(a\) and \(b\) in the van der Waals equation.
Chapter 10: Problem 86
Briefly explain the significance of the constants \(a\) and \(b\) in the van der Waals equation.
All the tools & learning materials you need for study success - in one app.
Get started for freeA sample of \(1.42 \mathrm{~g}\) of helium and an unweighed quantity of \(\mathrm{O}_{2}\) are mixed in a flask at room temperature. The partial pressure of helium in the flask is \(42.5\) torr, and the partial pressure of oxygen is 158 torr. What is the mass of the oxygen in the container?
Consider the combustion reaction hetween \(25.0 \mathrm{mI}\). of liquid methanol (density \(=0.850 \mathrm{~g} / \mathrm{mL}\) ) and \(12.5 \mathrm{~L}\) of oxygen gas measured at STP. The products of the reaction are \(\mathrm{CO}_{2}(g)\) and \(\mathrm{H}_{2} \mathrm{O}(g)\). Calculate the number of moles of \(\mathrm{H}_{2} \mathrm{O}\) formed if the reaction goes to completion.
A 6.53-g sample of a mixture of magnesium carbonate and calcium carbonate is treated with excess hydrochloric acid. The resulting reaction produces \(1.72 \mathrm{~L}\) of carbon dioxide gas at \(28^{\circ} \mathrm{C}\) and 743 torr pressure. (a) Write balanced chemical equations for the reactions that occur between hydrochloric acid and each component of the mixture. (b) Calculate the total number of moles of carbon dioxide that forms from these reactions. (c) Assuming that the reactions are complete, calculate the percentage by mass of magnesium carbonate in the mixture.
An open-end manometer containing mercury is connected to a container of gas, as depicted in Sample Exercise \(10.2\). What is the pressure of the enclosed gas in torr in each of the following situations? (a) The mercury in the arm attached to the gas is \(15.4 \mathrm{~mm}\) higher than in the one open to the atmosphere; atmospheric pressure is \(0.966\) atm. (b) The mercury in the arm attached to the gas is \(8.7 \mathrm{~mm}\) lower than in the one open to the atmosphere; atmospheric pressure is \(0.99\) atm.
Chlorine is widely used to purify municipal water supplies and to treat swimming pool waters. Suppose that the volume of a particular sample of \(\mathrm{Cl}_{2}\) gas is \(8.70 \mathrm{~L}\) at 895 torr and \(24{ }^{\circ} \mathrm{C}\). (a) How many grams of \(\mathrm{Cl}_{2}\) are in the sample? (b) What volume will the \(\mathrm{Cl}_{2}\) occupy at STP? (c) At what temperature will the volume be \(15.00 \mathrm{~L}\) if the pressure is \(8.76 \times 10^{2}\) torr? (d) At what pressure will the volume equal \(6.00 \mathrm{~L}\) if the temperature is \(58^{\circ} \mathrm{C}\) ?
What do you think about this solution?
We value your feedback to improve our textbook solutions.