Chapter 10: Problem 85
Based on their respective van der Waals constants (Table 10.3), is Ar or \(\mathrm{CO}_{2}\) expected to behave more nearly like an ideal gas at high pressures? Explain.
Chapter 10: Problem 85
Based on their respective van der Waals constants (Table 10.3), is Ar or \(\mathrm{CO}_{2}\) expected to behave more nearly like an ideal gas at high pressures? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe density of a gas of unknown molar mass was measured as a function of pressure at \(0{ }^{\circ} \mathrm{C}\), as in the table below. (a) Determine a precise molar mass for the gas. Hint: Graph \(d / P\) versus \(P\). (b) Why is \(d / P\) not a constant as a function of pressure? $$ \begin{array}{llllll} \hline \begin{array}{l} \text { Pressure } \\ \text { (atm) } \end{array} & 1.00 & 0.666 & 0.500 & 0.333 & 0.250 \\ \text { Density } & & & & & \\ \text { (g/L) } & 2.3074 & 1.5263 & 1.1401 & 0.7571 & 0.5660 \\ \hline \end{array} $$
Newton had an incorrect theory of gases in which he assumed that all gas molecules repel one another and the walls of their container. Thus, the molecules of a gas are statically and uniformly distributed, trying to get as far apart as possible from one another and the vessel walls. This repulsion gives rise to pressure. Explain why Charles's law argues for the kinetic- molecular theory and against Newton's model.
At an underwater depth of \(250 \mathrm{ft}\), the pressure is \(8.38 \mathrm{~atm}\). What should the mole percent of oxygen be in the diving gas for the partial pressure of oxygen in the mixture to be \(0.21 \mathrm{~atm}\), the same as in air at \(1 \mathrm{~atm}\) ?
A sample of \(4.00 \mathrm{~mL}\) of diethylether \(\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5},\right.\), density \(=0.7134 \mathrm{~g} / \mathrm{mL}\) ) is introduced into a 5.00-L vessel that already contains a mixture of \(\mathrm{N}_{2}\) and \(\mathrm{O}_{2}\), whose partial pressures are \(P_{N_{2}}=0.751 \mathrm{~atm}\) and \(P_{\mathrm{O}_{2}}=0.208 \mathrm{~atm}\). The temperature is held at \(35.0^{\circ} \mathrm{C}\), and the diethylether totally evaporates. (a) Calculate the partial pressure of the diethylether. (b) Calculate the total pressure in the container.
A mixture of gases contains \(0.75 \mathrm{~mol} \mathrm{~N}_{2}, 0.30 \mathrm{~mol} \mathrm{O}_{2}\) and \(0.15 \mathrm{~mol} \mathrm{CO}_{2}\). If the total pressure of the mixture is \(1.56 \mathrm{~atm}\), what is the partial pressure of each component?
What do you think about this solution?
We value your feedback to improve our textbook solutions.