Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The planet Jupiter has a surface temperature of \(140 \mathrm{~K}\) and a mass 318 times that of Earth. Mercury has a surface temperature between \(600 \mathrm{~K}\) and \(700 \mathrm{~K}\) and a mass \(0.05\) times that of Earth. On which planet is the atmosphere more likely to obey the ideal-gas law? Explain.

Short Answer

Expert verified
Based on our comparison of the estimated densities and surface temperatures, Mercury's atmosphere is less dense and has a higher surface temperature than Jupiter's atmosphere. Therefore, the atmosphere on the planet Mercury is more likely to obey the ideal-gas law.

Step by step solution

01

Compute masses of Jupiter and Mercury

First, we need to calculate the masses of Jupiter and Mercury relative to the Earth's mass. Let the Earth's mass be represented by \(M_{earth}\). Then, the masses of Jupiter and Mercury can be calculated as follows: Mass of Jupiter \(= 318 * M_{earth} \) Mass of Mercury \(= 0.05 * M_{earth}\)
02

Estimate the densities of the atmospheres

Now we will estimate the densities of the atmospheres of both planets. To do this, we will use the equation for density: \(density = \frac{mass}{volume}\) For simplicity, let's assume a constant volume for both planets' atmospheres. Since Jupiter has a much larger mass than Mercury, its atmosphere is denser if we assume the same volume for both planets. Keep in mind that this is just an estimation, and it doesn't consider the effect of gravity on the density of the atmospheres.
03

Compare the surface temperatures of both planets

Based on the given information, the surface temperature of Jupiter is \(140 K\) and that of Mercury is between \(600 K\) and \(700 K\). The ideal-gas law is more likely to be valid at higher surface temperatures.
04

Determine which planet's atmosphere is more likely to obey the ideal-gas law

Based on our comparison of the estimated densities and surface temperatures, we can conclude that Mercury's atmosphere is less dense and has a higher surface temperature than Jupiter's atmosphere. Therefore, the atmosphere on the planet Mercury is more likely to obey the ideal-gas law.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What change or changes in the state of a gas bring about each of the following effects? (a) The number of impacts per unit time on a given container wall increases. (b) The average energy of impact of molecules with the wall of the container decreases. (c) The average distance between gas molecules increases. (d) The average speed of molecules in the gas mixture is increased.

Perform the following conversions: (a) \(0.850\) atm to torr, (b) 785 torr to kilopascals, (c) \(655 \mathrm{~mm} \mathrm{Hg}\) to atmospheres, (d) \(1.323 \times 10^{5}\) Pa to atmospheres, (e) \(2.50\) atm to bars.

A neon sign is made of glass tubing whose inside diameter is \(2.5 \mathrm{~cm}\) and whose length is \(5.5 \mathrm{~m}\). If the sign contains neon at a pressure of \(1.78\) torr at \(35^{\circ} \mathrm{C}\), how many grams of neon are in the sign? (The volume of a cylinder is \(\pi r^{2} h .\) )

Chlorine dioxide gas \(\left(\mathrm{ClO}_{2}\right)\) is used as a commercial bleaching agent. It bleaches materials by oxidizing them. In the course of these reactions, the \(\mathrm{ClO}_{2}\) is itself reduced. (a) What is the Lewis structure for \(\mathrm{ClO}_{2}\) ? (b) Why do you think that \(\mathrm{ClO}_{2}\) is reduced so readily? (c) When a \(\mathrm{ClO}_{2}\) molecule gains an electron, the chlorite ion, \(\mathrm{ClO}_{2}^{-}\), forms. Draw the Lewis structure for \(\mathrm{ClO}_{2}^{-}\). (d) Predict the \(\mathrm{O}-\mathrm{Cl}-\mathrm{O}\) bond angle in the \(\mathrm{ClO}_{2}^{-}\) ion. (e) One method of preparing \(\mathrm{ClO}_{2}\) is by the reaction of chlorine and sodium chlorite: $$ \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NaClO}_{2}(\mathrm{~s}) \longrightarrow 2 \mathrm{ClO}_{2}(\mathrm{~g})+2 \mathrm{NaCl}(\mathrm{s}) $$ If you allow \(10.0 \mathrm{~g}\) of \(\mathrm{NaClO}_{2}\) to react with \(2.00 \mathrm{~L}\) of chlorine gas at a pressure of \(1.50 \mathrm{~atm}\) at \(21{ }^{\circ} \mathrm{C}\), how many grams of \(\mathrm{ClO}_{2}\) can be prepared?

Nickel carbonyl, \(\mathrm{Ni}(\mathrm{CO})_{4}\), is one of the most toxic substances known. The present maximum allowable concentration in laboratory air during an 8 -hr workday is 1 part in \(10^{9}\) parts by volume, which means that there is one mole of \(\mathrm{Ni}(\mathrm{CO})_{4}\) for every \(10^{9}\) moles of gas. Assume \(24{ }^{\circ} \mathrm{C}\) and \(1.00 \mathrm{~atm}\) pressure. What mass of \(\mathrm{Ni}(\mathrm{CO})_{4}\) is allowable in a laboratory that is \(54 \mathrm{~m}^{2}\) in area, with a ceiling height of \(3.1 \mathrm{~m}\) ?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free