Chapter 10: Problem 118
A gas forms when elemental sulfur is heated carefully with AgF. The initial product boils at \(15^{\circ} \mathrm{C}\). Experiments on several samples yielded a gas density of \(0.803 \pm 0.010 \mathrm{~g} / \mathrm{L}\) for the gas at \(150 \mathrm{~mm}\) pressure and \(32{ }^{\circ} \mathrm{C}\). When the gas reacts with water, all the fluorine is converted to aqueous HF. Other products are elemental sulfur, \(S_{8}\), and other sulfur-containing compounds. A 480 -mL sample of the dry gas at \(126 \mathrm{~mm}\) pressure and \(28^{\circ} \mathrm{C}\), when reacted with \(80 \mathrm{~mL}\) of water, yielded a \(0.081 \mathrm{M}\) solution of HF. The initial gaseous product undergoes a transformation over a period of time to a second compound with the same empirical and molecular formula, which boils at \(-10^{\circ} \mathrm{C}\). (a) Determine the empirical and molecular formulas of the first compound formed. (b) Draw at least two reasonable Lewis structures that represent the initial compound and the one into which it is transformed over time. (c) Describe the likely geometries of these compounds, and estimate the single bond distances, given that the \(\mathrm{S}-\mathrm{S}\) bond distance in \(\mathrm{S}_{8}\) is \(2.04 \mathrm{~A}\) and the \(\mathrm{F}-\mathrm{F}\) distance in \(\mathrm{F}_{2}\) is \(1.43 \mathrm{~A}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.