Chapter 10: Problem 11
How does a gas differ from a liquid with respect to each of the following properties: (a) density, (b) compressibility, (c) ability to mix with other substances of the same phase to form homogeneous mixtures?
Chapter 10: Problem 11
How does a gas differ from a liquid with respect to each of the following properties: (a) density, (b) compressibility, (c) ability to mix with other substances of the same phase to form homogeneous mixtures?
All the tools & learning materials you need for study success - in one app.
Get started for freeA fixed quantity of gas at \(21{ }^{\circ} \mathrm{C}\) exhibits a pressure of 752 torr and occupies a volume of \(4.38 \mathrm{~L}\). (a) Use Boyle's law to calculate the volume the gas will occupy if the pressure is increased to \(1.88 \mathrm{~atm}\) while the temperature is held constant. (b) Use Charles's law to calculate the volume the gas will occupy if the temperature is increased to \(175^{\circ} \mathrm{C}\) while the pressure is held constant.
Suppose the mercury used to make a barometer has a few small droplets of water trapped in it that rise to the top of the mercury in the tube. Will the barometer show the correct atmospheric pressure? Explain
(a) Calculate the density of \(\mathrm{NO}_{2}\) gas at \(0.970 \mathrm{~atm}\) and \(35^{\circ} \mathrm{C}\). (b) Calculate the molar mass of a gas if \(2.50 \mathrm{~g}\) occupies \(0.875 \mathrm{~L}\) at 685 torr and \(35^{\circ} \mathrm{C}\).
Suppose you have two 1-L flasks, one containing \(\mathrm{N}_{2}\) at STP, the other containing \(\mathrm{CH}_{4}\) at STP. How do these systems compare with respect to (a) number of molecules, (b) density, (c) average kinetic energy of the molecules, (d) rate of effusion through a pinhole leak?
(a) Place the following gases in order of increasing average molecular speed at \(25^{\circ} \mathrm{C}: \mathrm{Ne}, \mathrm{HBr}, \mathrm{SO}_{2}, \mathrm{NF}_{3}, \mathrm{CO}\). (b) Calculate the rms speed of \(\mathrm{NF}_{3}\) molecules at \(25^{\circ} \mathrm{C}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.