Chapter 15: Problem 37
Calculate the activation energy, \(E_{\alpha}\), for the reaction $$2 \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g})$$ from the observed rate constants: \(k\) at \(25^{\circ} \mathrm{C}=\) \(3.46 \times 10^{-5} s^{-1}\) and \(k\) at \(55^{\circ} \mathrm{C}=1.5 \times 10^{-3} \mathrm{s}^{-1}.\)
Short Answer
Step by step solution
Identify Known Values
Use the Arrhenius Equation
Apply the Arrhenius Equation to Two Temperatures
Calculate the Natural Logarithm of Rate Constants Ratio
Calculate the Inverse Temperature Difference
Solve for Activation Energy \(E_{\alpha}\)
Convert Activation Energy to kJ/mol
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.