Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Complete the following table: $$ \begin{array}{|l|l|l|l|} \hline\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] & {\left[\mathrm{OH}^{-}\right]} & \mathrm{pH} & \begin{array}{l} \text { Acidic, Basic, } \\ \text { or Neutral? } \end{array} \\ \hline & 1 \times 10^{-6} \mathrm{M} & & \\ \hline & & 3.0 & \\ \hline 2 \times 10^{-5} \mathrm{M} & & & \\ \hline 1 \times 10^{-12} \mathrm{M} & & & \\ \hline & & 4.62 & \\ \hline \end{array} $$

Short Answer

Expert verified
The solutions are: 1E-8 M, 8, Basic; 1E-3 M, 1E-11 M, Acidic; 5E-10 M, 4.69-4.70, Acidic; 1E-2 M, 12, Basic; 2.40E-10 M, Acidic.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Compute missing \( [\text{H}_3\text{O}^+] \) or \( [\text{OH}^-] \)

For solutions, the product of \( [\text{H}_3\text{O}^+] \) and \( [\text{OH}^-] \) is always equal to the ion-product constant for water, \( K_w = 1.0 \times 10^{-14} \). Thus, \( [\text{H}_3\text{O}^+] = \frac{K_w}{[\text{OH}^-]} \) and vice-versa.
02

Calculate for the row with \( [\text{OH}^-] = 1 \times 10^{-6} \text{ M} \)

Use \( [\text{H}_3\text{O}^+] = \frac{1.0 \times 10^{-14}}{1 \times 10^{-6}} = 1 \times 10^{-8} \text{ M} \). Then, calculate the pH using \( \text{pH} = -\text{log} [\text{H}_3\text{O}^+] = 8 \). The solution is basic because \( \text{pH} > 7 \).
03

Calculate for the row with pH 3.0

Use \( [\text{H}_3\text{O}^+] = 10^{-\text{pH}} = 10^{-3} \text{ M} \), and \( [\text{OH}^-] = \frac{1.0 \times 10^{-14}}{10^{-3}} = 1 \times 10^{-11} \text{ M} \). The solution is acidic because \( \text{pH} < 7 \).
04

Calculate for the row with \( [\text{H}_3\text{O}^+] = 2 \times 10^{-5} \text{ M} \)

Use \( [\text{OH}^-] = \frac{1.0 \times 10^{-14}}{2 \times 10^{-5}} = 5 \times 10^{-10} \text{ M} \). Then, calculate the pH using \( \text{pH} = -\text{log}(2 \times 10^{-5}) \). Approximating, \( \text{pH} \) is between 4.69 and 4.70. The solution is acidic because \( \text{pH} < 7 \).
05

Calculate for the row with \( [\text{H}_3\text{O}^+] = 1 \times 10^{-12} \text{ M} \)

Use \( [\text{OH}^-] = \frac{1.0 \times 10^{-14}}{1 \times 10^{-12}} = 1 \times 10^{-2} \text{ M} \). Then, calculate the pH using \( \text{pH} = -\text{log}(1 \times 10^{-12}) = 12 \). The solution is basic because \( \text{pH} > 7 \).
06

Calculate for the row with pH 4.62

Use \( [\text{H}_3\text{O}^+] = 10^{-\text{pH}} = 10^{-4.62} \text{ M} \), and \( [\text{OH}^-] = \frac{1.0 \times 10^{-14}}{10^{-4.62}} = 2.40 \times 10^{-10} \text{ M} \). The solution is acidic because \( \text{pH} < 7 \).

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

pH Calculation
The pH of a solution is a measure of its acidity or basicity.
It is calculated using the concentration of hydronium ions, \( [\text{H}_3\text{O}^+] \).
The pH is given by the formula: \[ \text{pH} = -\log([\text{H}_3\text{O}^+]) \]
For example, if \( [\text{H}_3\text{O}^+] = 10^{-3} \text{ M} \), then: \[ \text{pH} = -\log(10^{-3}) = 3 \]
A lower pH value indicates a higher acidity, while a higher pH value indicates a higher basicity.
Ion-Product Constant
In water, the product of the concentrations of hydronium ions \( [\text{H}_3\text{O}^+] \) and hydroxide ions \( [\text{OH}^-] \) is a constant value.
This constant is known as the ion-product constant for water, \( K_w \), and its value is \( 1.0 \times 10^{-14} \) at 25°C.
This relationship is given by: \[ [\text{H}_3\text{O}^+] \times [\text{OH}^-] = K_w \]
This means that if you know the concentration of one ion, you can calculate the concentration of the other one.
For example, if \( [\text{OH}^-] = 1 \times 10^{-6} \text{ M} \), then: \[ [\text{H}_3\text{O}^+] = \frac{K_w}{[\text{OH}^-]} = \frac{1.0 \times 10^{-14}}{1 \times 10^{-6}} = 1 \times 10^{-8} \text{ M} \]
Hydronium Ion Concentration
Hydronium ions \( [\text{H}_3\text{O}^+] \) are central to the concept of acidity.
Their concentration can be directly related to the acidity of a solution.
We can calculate \( [\text{H}_3\text{O}^+] \) if we know the pH or the \( [\text{OH}^-] \).
For instance, if the pH is 4.62, then: \[ [\text{H}_3\text{O}^+] = 10^{-\text{pH}} = 10^{-4.62} \text{ M} \]
And if \( [\text{OH}^-] = 1 \times 10^{-12} \text{ M} \), then: \[ [\text{H}_3\text{O}^+] = \frac{K_w}{[\text{OH}^-]} = \frac{1.0 \times 10^{-14}}{1 \times 10^{-12}} = 1 \times 10^{-2} \text{ M} \]
Hydroxide Ion Concentration
Hydroxide ions \( [\text{OH}^-] \) determine the basicity of a solution.
Like hydronium ions, their concentration can be calculated using the ion-product constant, \( K_w \).
If the hydronium ion concentration is known, we can find \( [\text{OH}^-] \) using: \[ [\text{OH}^-] = \frac{K_w}{[\text{H}_3\text{O}^+]} \]
For instance, if \( [\text{H}_3\text{O}^+] = 2 \times 10^{-5} \text{ M} \), then: \[ [\text{OH}^-] = \frac{1.0 \times 10^{-14}}{2 \times 10^{-5}} = 5 \times 10^{-10} \text{ M} \]
Acidic and Basic Solutions
The pH scale ranges from 0 to 14 and categorizes solutions as acidic, neutral, or basic.
  • Acidic: pH < 7
  • Neutral: pH = 7
  • Basic: pH > 7
The pH depends on the balance between hydronium and hydroxide ions.
For example, if the pH is 3.0, the solution is acidic.
For a pH of 12, the solution is basic.
Understanding these principles helps in predicting the behavior and reactivity of solutions in different chemical contexts.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the \(\mathrm{pH}\) of each solution given the following \(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\) or \(\left[\mathrm{OH}^{-}\right]\) values: a. \(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-8} \mathrm{M}\) b. \(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5 \times 10^{-6} \mathrm{M}\) c. \(\left[\mathrm{OH}^{-}\right]=4 \times 10^{-2} \mathrm{M}\) d. \(\left[\mathrm{OH}^{-}\right]=8 \times 10^{-3} \mathrm{M}\) e. \(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.7 \times 10^{-2} \mathrm{M}\) f. \(\left[\mathrm{OH}^{-}\right]=3.9 \times 10^{-6} \mathrm{M}\)

If \(29.7 \mathrm{~mL}\) of a \(0.205 \mathrm{M} \mathrm{KOH}\) solution is required to neutralize \(25.0 \mathrm{~mL}\) of \(\mathrm{a} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\) solution, what is the molarity of the acetic acid solution? \(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{KOH}(a q) \longrightarrow \mathrm{KC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l)\)

Write the formula of the conjugate base for each of the following: a. \(\mathrm{HSO}_{3}^{-}\) b. \(\mathrm{H}_{3} \mathrm{O}^{+}\) c. \(\mathrm{HPO}_{4}^{2-}\) d. \(\mathrm{HNO}_{2}\)

One ingredient in some antacids is \(\mathrm{Mg}(\mathrm{OH})_{2}\). a. If the base is not very soluble in water, why is it considered a strong base? b. What is the neutralization reaction of \(\mathrm{Mg}(\mathrm{OH})_{2}\) with stomach acid, \(\mathrm{HCl}\) ?

If \(38.2 \mathrm{~mL}\) of a \(0.163 \mathrm{M} \mathrm{KOH}\) solution is required to neutralize \(25.0 \mathrm{~mL}\) of \(\mathrm{a} \mathrm{H}_{2} \mathrm{SO}_{4}\) solution, what is the molarity of the \(\mathrm{H}_{2} \mathrm{SO}_{4}\) solution? $$ \mathrm{H}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{KOH}(a q) \longrightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) $$

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free