Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Calculate each of the following: a. number of \(\mathrm{C}\) atoms in \(0.500\) mole of \(\mathrm{C}\) b. number of \(\mathrm{SO}_{2}\) molecules in \(1.28\) moles of \(\mathrm{SO}_{2}\) c. moles of \(\mathrm{Fe}\) in \(5.22 \times 10^{22}\) atoms of \(\mathrm{Fe}\) d. moles of \(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\) in \(8.50 \times 10^{24}\) molecules of \(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\)

Short Answer

Expert verified
a. \mathrm{C} atoms: 3.011 \times 10^{23} atoms, b. \mathrm{SO}_{2} molecules: 7.70 \times 10^{23}, c. \mathrm{Fe} moles: 0.0867, d. \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} moles: 14.1

Step by step solution

01

Number of \mathrm{C} atoms in 0.500 mole of \mathrm{C}

To find the number of atoms, use Avogadro's number, which is \(6.022 \times 10^{23}////\) atoms/mole. Multiply the number of moles by Avogadro's number: \[\text{Number of } \mathrm{C} \text{ atoms} = 0.500 \text{ moles} \times 6.022 \times 10^{23} \text{ atoms/mole} \]
02

Calculate the number of \mathrm{C} atoms

Perform the calculation: \[\text{Number of } \mathrm{C} \text{ atoms} = 3.011 \times 10^{23} \text{ atoms} \]
03

Number of \mathrm{SO}_{2} molecules in 1.28 moles of \mathrm{SO}_{2}

Multiply the number of moles by Avogadro's number: \[\text{Number of } \mathrm{SO}_{2} \text{ molecules} = 1.28 \text{ moles} \times 6.022 \times 10^{23} \text{ molecules/mole} \]
04

Calculate the number of \mathrm{SO}_{2} molecules

Perform the calculation: \[\text{Number of } \mathrm{SO}_{2} \text{ molecules} = 7.70 \times 10^{23} \text{ molecules} \]
05

Moles of \mathrm{Fe} in 5.22 \times 10^{22} atoms of \mathrm{Fe}

To find the number of moles, use Avogadro's number. Divide the number of atoms by Avogadro's number: \[\text{Moles of } \mathrm{Fe} = \frac{5.22 \times 10^{22} \text{ atoms}}{6.022 \times 10^{23} \text{ atoms/mole}} \]
06

Calculate the moles of \mathrm{Fe}

Perform the calculation: \[\text{Moles of } \mathrm{Fe} = 0.0867 \text{ moles} \]
07

Moles of \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} in 8.50 \times 10^{24} molecules of \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}

To find the number of moles, use Avogadro's number. Divide the number of molecules by Avogadro's number: \[\text{Moles of } \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} = \frac{8.50 \times 10^{24} \text{ molecules}}{6.022 \times 10^{23} \text{ molecules/mole}} \]
08

Calculate the moles of \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}

Perform the calculation: \[\text{Moles of } \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} = 14.1 \text{ moles} \]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Avogadro's number
Avogadro's number is a fundamental constant in chemistry. It represents the number of atoms, ions, or molecules in one mole of a substance.
Avogadro's number is written as \( 6.022 \times 10^{23} \). This huge number helps chemists understand and calculate the number of particles in macroscopic samples.
Using Avogadro's number allows chemists to bridge the gap between the atomic scale and the scale of everyday measurements. For instance, one mole of carbon contains \( 6.022 \times 10^{23} \) carbon atoms.
Moles to atoms/molecules conversion
Converting moles to atoms or molecules is straightforward when you use Avogadro's number.
If you have the number of moles, you can find the number of particles by multiplying the moles by \( 6.022 \times 10^{23} \).
For example, to find the number of \( \text{SO}_2 \) molecules in 1.28 moles, you simply multiply:
\[ 1.28 \text{ moles} \times 6.022 \times 10^{23} \text{ molecules/mole} = 7.70 \times 10^{23} \text{ molecules} \].
This way, you can easily determine the number of atoms or molecules from a given amount of substance.
Stoichiometry
Stoichiometry involves the quantitative relationships between reactants and products in a chemical reaction. This concept is crucial for predicting how much of each substance is consumed or produced.
Using stoichiometry, you can determine the amount of product formed from a given amount of reactant, or vice versa.
Key to stoichiometry is the balanced chemical equation, where the coefficients indicate the relative numbers of moles of each substance involved in the reaction.
For example, in the reaction \( 2H_2 + O_2 → 2H_2O \), two moles of hydrogen react with one mole of oxygen to produce two moles of water.
Chemical Quantities
Understanding chemical quantities is essential for handling substances in various chemical reactions.
Using Avogadro's number, you can convert between moles and the number of particles. You can also determine the mass of a certain number of moles using the molar mass.
Let's consider the calculation of moles of \( \text{Fe} \) in \( 5.22 \times 10^{22} \) atoms of \( \text{Fe} \).
Divide the number of atoms by Avogadro's number: \[ \text{Moles of } \text{Fe} = \frac{5.22 \times 10^{22} \text{ atoms}}{6.022 \times 10^{23} \text{ atoms/mole}} = 0.0867 \text{ moles} \].
This ensures accurate and meaningful quantification in chemical calculations.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calcium cyanamide reacts with water to form calcium carbonate and ammonia. $$ \mathrm{CaCN}_{2}(s)+3 \mathrm{H}_{2} \mathrm{O}(I) \longrightarrow \mathrm{CaCO}_{3}(s)+2 \mathrm{NH}_{3}(g) $$ a. How many grams of water are needed to react with \(75.0 \mathrm{~g}\) of \(\mathrm{CaCN}_{2}\) ? b. How many grams of \(\mathrm{NH}_{3}\) are produced from \(5.24 \mathrm{~g}\) of \(\mathrm{CaCN}_{2} ?\) c. How many grams of \(\mathrm{CaCO}_{3}\) form if \(155 \mathrm{~g}\) of water reacts?

Classify each of the following reactions as a combination, decomposition, single replacement, double replacement, or combustion: a. \(\mathrm{CuO}(s)+2 \mathrm{HCl}(a q) \longrightarrow \mathrm{CuCl}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l)\) b. \(2 \mathrm{Al}(s)+3 \mathrm{Br}_{2}(g) \longrightarrow 2 \mathrm{AlBr}_{3}(s)\) c. \(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{NaCl}(a q) \longrightarrow \mathrm{PbCl}_{2}(s)+2 \mathrm{NaNO}_{3}(a q)\) d. \(2 \mathrm{Mg}(s)+\mathrm{O}_{2}(g) \stackrel{\Delta}{\longrightarrow} 2 \mathrm{MgO}(s)\) e. \(2 \mathrm{C}_{2} \mathrm{H}_{2}(g)+5 \mathrm{O}_{2}(g) \stackrel{\Delta}{\longrightarrow} 4 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)\) f. \(\mathrm{Fe}_{2} \mathrm{O}_{3}(s)+3 \mathrm{C}(s) \longrightarrow 2 \mathrm{Fe}(s)+3 \mathrm{CO}(g)\) g. \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q) \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}(a q)+2 \mathrm{CO}_{2}(g)\) h. \(\mathrm{BaCl}_{2}(a q)+\mathrm{K}_{2} \mathrm{CO}_{3}(a q) \longrightarrow \mathrm{BaCO}_{3}(s)+2 \mathrm{KCl}(a q)\)

Balance each of the following equations: a. \(\mathrm{Zn}(s)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \longrightarrow \mathrm{ZnSO}_{4}(a q)+\mathrm{H}_{2}(g)\) b. \(\mathrm{Al}(s)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \longrightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)+\mathrm{H}_{2}(g)\) c. \(\mathrm{K}_{2} \mathrm{SO}_{4}(a q)+\mathrm{BaCl}_{2}(a q) \longrightarrow \mathrm{BaSO}_{4}(s)+\mathrm{KCl}(a q)\) \(\mathrm{d} . \mathrm{CaCO}_{3}(s) \longrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)\)

Classify each of the following reactions as a combination, decomposition, single replacement, double replacement, or combustion: a. \(4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(s)\) b. \(\mathrm{Mg}(s)+2 \mathrm{AgNO}_{3}(a q) \longrightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{Ag}(s)\) c. \(\mathrm{CuCO}_{3}(s) \stackrel{\Delta}{\longrightarrow} \mathrm{CuO}(s)+\mathrm{CO}_{2}(g)\) d. \(\mathrm{NaOH}(a q)+\mathrm{HCl}(a q) \longrightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(t)\) e. \(\mathrm{ZnCO}_{3}(s) \stackrel{\Delta}{\longrightarrow} \mathrm{CO}_{2}(g)+\mathrm{ZnO}(s)\) f. \(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)+6 \mathrm{KOH}(a q) \longrightarrow\) \(2 \mathrm{Al}(\mathrm{OH})_{3}(s)+3 \mathrm{~K}_{2} \mathrm{SO}_{4}(a q)\) \(\mathrm{g} \cdot \mathrm{Pb}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{PbO}_{2}(s)\) h. \(\mathrm{C}_{4} \mathrm{H}_{8}(g)+6 \mathrm{O}_{2}(g) \stackrel{\Delta}{\longrightarrow} 4 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)\)

Chlorine \(\left(\mathrm{Cl}_{2}\right)\) is a strong germicide used to disinfect drinking water and to kill microbes in swimming pools. If the product is \(\mathrm{Cl}^{-}\), was the elemental chlorine oxidized or reduced?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free