Chapter 9: Problem 76
The structure of manganese fluoride can be described as a simple cubic array of manganese ions with fluoride ions at the center of each edge of the cubic unit cell. What is the charge of the manganese ions in this compound?
Chapter 9: Problem 76
The structure of manganese fluoride can be described as a simple cubic array of manganese ions with fluoride ions at the center of each edge of the cubic unit cell. What is the charge of the manganese ions in this compound?
All the tools & learning materials you need for study success - in one app.
Get started for freeA common response to hearing that the temperature in New Mexico is \(105^{\circ} \mathrm{F}\) is, "It's not that bad; it's a dry heat," whereas at the same time the summers in Atlanta, Georgia, are characterized as "dreadful," even though the air temperature is typically lower. What role does humidity play in how our bodies regulate temperature?
A common prank on college campuses is to switch the salt and sugar on dining hall tables, which is usually easy because the substances look so much alike. Yet, despite the similarity in their appearance, these two substances differ greatly in their properties, since one is a molecular solid and the other is an ionic solid. How do the properties differ and why?
Pyrolusite is a mineral containing manganese ions and oxide ions. Its structure can best be described as a body-centered cubic array of manganese ions with two oxide ions inside the unit cell and two oxide ions each on two faces of the cubic unit cell. What is the charge on the manganese ions in pyrolusite?
Consider the following enthalpy changes: $$\begin{aligned} \mathrm{F}^{-}+\mathrm{HF} \longrightarrow \mathrm{FHF}^{-} & \Delta H=-155 \mathrm{kJ} / \mathrm{mol} \\ \left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}+\mathrm{HF} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}--\mathrm{HF} & \Delta H=-46 \mathrm{kJ} / \mathrm{mol} \\\ \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{HOH}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}--\mathrm{HOH}(\text { in ice }) & \Delta H=-21 \mathrm{kJ} / \mathrm{mol} \end{aligned}$$ How do the strengths of hydrogen bonds vary with the electronegativity of the element to which hydrogen is bonded? Where in the preceding series would you expect hydrogen bonds of the following type to fall?
Why is a burn from steam typically much more severe than a burn from boiling water?
What do you think about this solution?
We value your feedback to improve our textbook solutions.