Chapter 9: Problem 15
Atoms are assumed to touch in closest packed structures, yet every closest packed unit cell contains a significant amount of empty space. Why?
Chapter 9: Problem 15
Atoms are assumed to touch in closest packed structures, yet every closest packed unit cell contains a significant amount of empty space. Why?
All the tools & learning materials you need for study success - in one app.
Get started for freeA \(20.0-\mathrm{g}\) sample of ice at \(-10.0^{\circ} \mathrm{C}\) is mixed with \(100.0 \mathrm{g}\) water at \(80.0^{\circ} \mathrm{C}\). Calculate the final temperature of the mixture assuming no heat loss to the surroundings. The heat capacities of \(\mathrm{H}_{2} \mathrm{O}(s)\) and \(\mathrm{H}_{2} \mathrm{O}(l)\) are 2.03 and \(4.18 \mathrm{J} / \mathrm{g} \cdot^{\circ} \mathrm{C},\) respectively, and the enthalpy of fusion for ice is \(6.02 \mathrm{kJ} / \mathrm{mol}\).
General Zod has sold Lex Luthor what Zod claims to be a new copper-colored form of kryptonite, the only substance that can harm Superman. Lex, not believing in honor among thieves, decided to carry out some tests on the supposed kryptonite. From previous tests, Lex knew that kryptonite is a metal having a specific heat capacity of \(0.082 \mathrm{J} / \mathrm{g} \cdot^{\circ} \mathrm{C}\) and a density of \(9.2 \mathrm{g} / \mathrm{cm}^{3}.\) Lex Luthor's first experiment was an attempt to find the specific heat capacity of kryptonite. He dropped a \(10 \mathrm{g} \pm 3 \mathrm{g}\) sample of the metal into a boiling water bath at a temperature of \(100.0^{\circ} \mathrm{C} \pm 0.2^{\circ} \mathrm{C} .\) He waited until the metal had reached the bath temperature and then quickly transferred it to \(100 \mathrm{g} \pm 3 \mathrm{g}\) of water that was contained in a calorimeter at an initial temperature of \(25.0^{\circ} \mathrm{C} \pm 0.2^{\circ} \mathrm{C} .\) The final temperature of the metal and water was \(25.2^{\circ} \mathrm{C} .\) Based on these results, is it possible to distinguish between copper and kryptonite? Explain. When Lex found that his results from the first experiment were inconclusive, he decided to determine the density of the sample. He managed to steal a better balance and determined the mass of another portion of the purported kryptonite to be \(4 \mathrm{g} \pm 1\) g. He dropped this sample into water contained in a 25-mL graduated cylinder and found that it displaced a volume of \(0.42 \mathrm{mL} \pm 0.02 \mathrm{mL} .\) Is the metal copper or kryptonite? Explain. Lex was finally forced to determine the crystal structure of the metal General Zod had given him. He found that the cubic unit cell contained four atoms and had an edge length of \(600 . \mathrm{pm} .\) Explain how this information enabled Lex to identify the metal as copper or kryptonite. Will Lex be going after Superman with the kryptonite or seeking revenge on General Zod? What improvements could he have made in his experimental techniques to avoid performing the crystal structure determination?
Superalloys have been made of nickel and aluminum. The alloy owes its strength to the formation of an ordered phase, called the gamma-prime phase, in which Al atoms are at the corners of a cubic unit cell and Ni atoms are at the face centers. What is the composition (relative numbers of atoms) for this phase of the nickel-aluminum superalloy?
Like most substances, bromine exists in one of the three typical phases. \(\mathrm{Br}_{2}\) has a normal melting point of \(-7.2^{\circ} \mathrm{C}\) and a normal boiling point of \(59^{\circ} \mathrm{C}\). The triple point for \(\mathrm{Br}_{2}\) is \(-7.3^{\circ} \mathrm{C}\) and 40 torr, and the critical point is \(320^{\circ} \mathrm{C}\) and 100 atm. Using this information, sketch a phase diagram for bromine indicating the points described above. Based on your phase diagram, order the three phases from least dense to most dense. What is the stable phase of \(\mathrm{Br}_{2}\) at room temperature and 1 atm? Under what temperature conditions can liquid bromine never exist? What phase changes occur as the temperature of a sample of bromine at 0.10 atm is increased from \(-50^{\circ} \mathrm{C}\) to \(200^{\circ} \mathrm{C} ?\)
Spinel is a mineral that contains \(37.9 \%\) aluminum, \(17.1 \%\) magnesium, and \(45.0 \%\) oxygen, by mass, and has a density of \(3.57 \mathrm{g} / \mathrm{cm}^{3} .\) The edge of the cubic unit cell measures \(809 \mathrm{pm} .\) How many of each type of ion are present in the unit cell?
What do you think about this solution?
We value your feedback to improve our textbook solutions.