Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Equal moles of sulfur dioxide gas and oxygen gas are mixed in a flexible reaction vessel and then sparked to initiate the formation of gaseous sulfur trioxide. Assuming that the reaction goes to completion, what is the ratio of the final volume of the gas mixture to the initial volume of the gas mixture if both volumes are measured at the same temperature and pressure?

Short Answer

Expert verified
The ratio of the final volume of the gas mixture to the initial volume of the gas mixture is \(3/4\).

Step by step solution

01

Write a balanced chemical equation for the reaction

The balanced chemical equation for the reaction between sulfur dioxide and oxygen to form sulfur trioxide is: 2 SO2(g) + O2(g) -> 2 SO3(g) This equation shows that 2 moles of SO2 react with 1 mole of O2 to form 2 moles of SO3.
02

Calculate the ratio of moles of the substances before and after the reaction

Initially, we have equal moles of SO2 and O2. Let's assume we have x moles of each gas. Before the reaction, there are: - x moles of SO2 - x moles of O2 According to the balanced chemical equation in Step 1, for every 2 moles of SO2, there is 1 mole of O2 consumed. Therefore, in our case, x moles of SO2 will completely react with x/2 moles of O2. This will leave us with x - x/2 = x/2 moles of O2 unreacted. After the reaction goes to completion, there are: - 0 moles of SO2 (all SO2 has reacted) - x/2 moles of O2 (unreacted) - x moles of SO3 (formed) The total moles of gas after the reaction are x + x/2 = 3x/2 moles.
03

Use the ideal gas law to find the ratios of the volumes

Since the reaction is under constant temperature and pressure, we can use the ideal gas law (PV = nRT) to relate the volumes and moles of the gas mixture. Let V_initial and V_final represent the initial and final volumes of the gas mixture, respectively. Then: PV_initial = n_initial * RT PV_final = n_final * RT Since P, R, and T are constant for both cases, we can write the ratio of the final volume V_final to the initial volume V_initial: V_final / V_initial = (n_final * RT) / (n_initial * RT) The RT terms cancel out: V_final / V_initial = n_final / n_initial From Step 2, n_initial = 2x, and n_final = 3x/2: V_final / V_initial = (3x/2) / (2x) The x terms cancel out: V_final / V_initial = 3/4 So, the ratio of the final volume of the gas mixture to the initial volume of the gas mixture is 3/4.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A container is filled with an ideal gas to a pressure of 11.0 atm at \(0^{\circ} \mathrm{C}\). a. What will be the pressure in the container if it is heated to \(45^{\circ} \mathrm{C} ?\) b. At what temperature would the pressure be 6.50 atm? c. At what temperature would the pressure be 25.0 atm?

Methane \(\left(\mathrm{CH}_{4}\right)\) gas flows into a combustion chamber at a rate of \(200 .\) L/min at \(1.50\) atm and ambient temperature. Air is added to the chamber at 1.00 atm and the same temperature, and the gases are ignited. a. To ensure complete combustion of \(\mathrm{CH}_{4}\) to \(\mathrm{CO}_{2}(g)\) and \(\mathrm{H}_{2} \mathrm{O}(g),\) three times as much oxygen as is necessary is reacted. Assuming air is \(21\) mole percent \(\mathrm{O}_{2}\) and \(79\) mole percent \(\mathrm{N}_{2}\), calculate the flow rate of air necessary to deliver the required amount of oxygen. b. Under the conditions in part a, combustion of methane was not complete as a mixture of \(\mathrm{CO}_{2}(g)\) and \(\mathrm{CO}(g)\) was produced. It was determined that \(95.0 \%\) of the carbon in the exhaust gas was present in \(\mathrm{CO}_{2}\). The remainder was present as carbon in \(\mathrm{CO}\). Calculate the composition of the exhaust gas in terms of mole fraction of \(\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{N}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}\). Assume \(\mathrm{CH}_{4}\) is completely reacted and \(\mathrm{N}_{2}\) is unreacted.

Atmospheric scientists often use mixing ratios to express the concentrations of trace compounds in air. Mixing ratios are often expressed as ppmv (parts per million volume): $$\text { ppmv of } X=\frac{\text { vol of } X \text { at } \mathrm{STP}}{\text { total vol of air at } \mathrm{STP}} \times 10^{6}$$ On a certain November day, the concentration of carbon monoxide in the air in downtown Denver, Colorado, reached \(3.0 \times 10^{2}\) ppmv. The atmospheric pressure at that time was \(628\) torr and the temperature was \(0^{\circ} \mathrm{C}\) a. What was the partial pressure of \(\mathrm{CO}\)? b. What was the concentration of \(\mathrm{CO}\) in molecules per cubic meter? c. What was the concentration of \(\mathrm{CO}\) in molecules per cubic centimeter?

A steel cylinder contains \(5.00\) moles of graphite (pure carbon) and \(5.00\) moles of \(\mathrm{O}_{2}\). The mixture is ignited and all the graphite reacts. Combustion produces a mixture of \(\mathrm{CO}\) gas and \(\mathrm{CO}_{2}\) gas. After the cylinder has cooled to its original temperature, it is found that the pressure of the cylinder has increased by \(17.0 \% .\) Calculate the mole fractions of \(\mathrm{CO}, \mathrm{CO}_{2},\) and \(\mathrm{O}_{2}\) in the final gaseous mixture.

Silane, \(\mathrm{SiH}_{4},\) is the silicon analogue of methane, \(\mathrm{CH}_{4} .\) It is prepared industrially according to the following equations: $$\begin{aligned} \mathrm{Si}(s)+3 \mathrm{HCl}(g) & \longrightarrow \mathrm{HSiCl}(i)+\mathrm{H}_{2}(g) \\\4 \mathrm{HSiCl}_{3}(l) & \longrightarrow \mathrm{SiH}_{4}(g)+3 \mathrm{SiCl}_{4}(l)\end{aligned}$$ a. If \(156 \mathrm{mL} \mathrm{HSiCl}_{3}(d=1.34 \mathrm{g} / \mathrm{mL})\) is isolated when \(15.0 \mathrm{L}\) HCl at \(10.0\) atm and \(35^{\circ} \mathrm{C}\) is used, what is the percent yield of HSiCl_? b. When \(156 \mathrm{mL}\) \(HSiCl_{3}\)is heated, what volume of \(\mathrm{SiH}_{4}\) at \(10.0\) atm and \(35^{\circ} \mathrm{C}\) will be obtained if the percent yield of the reaction is \(93.1 \% ?\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free