Chapter 8: Problem 6
If you put a drinking straw in water, place your finger over the opening, and lift the straw out of the water, some water stays in the straw. Explain.
Chapter 8: Problem 6
If you put a drinking straw in water, place your finger over the opening, and lift the straw out of the water, some water stays in the straw. Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe average lung capacity of a human is \(6.0 \mathrm{~L}\). How many moles of air are in your lungs when you are in the following situations? a. At sea level \((T=298 \mathrm{~K}, P=1.00 \mathrm{~atm})\). b. \(10 . \mathrm{m}\) below water \((T=298 \mathrm{~K}, P=1.97 \mathrm{~atm})\). c. At the top of Mount Everest \((T=200 . \mathrm{K}, P=0.296 \mathrm{~atm})\).
Some very effective rocket fuels are composed of lightweight liquids. The fuel composed of dimethylhydrazine \(\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{N}_{2} \mathrm{H}_{2}\right]\) mixed with dinitrogen tetroxide was used to power the Lunar Lander in its missions to the moon. The two components react according to the following equation: $$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{N}_{2} \mathrm{H}_{2}(l)+2 \mathrm{N}_{2} \mathrm{O}_{4}(l) \longrightarrow 3 \mathrm{N}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)+2 \mathrm{CO}_{2}(g)$$ If 150 g dimethylhydrazine reacts with excess dinitrogen tetroxide and the product gases are collected at \(127^{\circ} \mathrm{C}\) in an evacuated \(250-\mathrm{L}\) tank, what is the partial pressure of nitrogen gas produced and what is the total pressure in the tank assuming the reaction has \(100 \%\) yield?
At STP, \(1.0 \mathrm{L}\) \(Br\) \(_{2}\) reacts completely with \(3.0 \mathrm{L} \mathrm{F}_{2}\), producing \(2.0 \mathrm{L}\) of a product. What is the formula of the product? (All substances are gases.)
The rate of effusion of a particular gas was measured and found to be \(24.0 \mathrm{mL} / \mathrm{min}\). Under the same conditions, the rate of effusion of pure methane \(\left(\mathrm{CH}_{4}\right)\) gas is \(47.8 \mathrm{mL} / \mathrm{min}\). What is the molar mass of the unknown gas?
Hydrogen cyanide is prepared commercially by the reaction of methane, \(\mathrm{CH}_{4}(g),\) ammonia, \(\mathrm{NH}_{3}(g),\) and oxygen, \(\mathrm{O}_{2}(g),\) at high temperature. The other product is gaseous water. a. Write a chemical equation for the reaction. b. What volume of HCN( \(g\) ) can be obtained from the reaction of \(20.0 \mathrm{L} \mathrm{CH}_{4}(g), 20.0 \mathrm{L} \mathrm{NH}_{3}(g),\) and \(20.0 \mathrm{LO}_{2}(g) ?\) The volumes of all gases are measured at the same temperature and pressure.
What do you think about this solution?
We value your feedback to improve our textbook solutions.