Chapter 8: Problem 36
Ideal gas particles are assumed to be volumeless and to neither attract nor repel each other. Why are these assumptions crucial to the validity of Dalton's law of partial pressures?
Chapter 8: Problem 36
Ideal gas particles are assumed to be volumeless and to neither attract nor repel each other. Why are these assumptions crucial to the validity of Dalton's law of partial pressures?
All the tools & learning materials you need for study success - in one app.
Get started for freeA large flask with a volume of \(936 \mathrm{mL}\) is evacuated and found to have a mass of \(134.66 \mathrm{g}\). It is then filled to a pressure of 0.967 atm at \(31^{\circ} \mathrm{C}\) with a gas of unknown molar mass and then reweighed to give a new mass of 135.87 g. What is the molar mass of this gas?
A tank contains a mixture of \(52.5 \mathrm{g}\) oxygen gas and \(65.1 \mathrm{g}\) carbon dioxide gas at \(27^{\circ} \mathrm{C}\). The total pressure in the tank is \(9.21\) atm. Calculate the partial pressures of each gas in the container.
A spherical glass container of unknown volume contains helium gas at \(25^{\circ} \mathrm{C}\) and \(1.960\) atm. When a portion of the helium is withdrawn and adjusted to 1.00 atm at \(25^{\circ} \mathrm{C},\) it is found to have a volume of \(1.75 \mathrm{cm}^{3} .\) The gas remaining in the first container shows a pressure of \(1.710 \) atm. Calculate the volume of the spherical container.
An organic compound contains \(\mathrm{C}, \mathrm{H}, \mathrm{N},\) and \(\mathrm{O} .\) Combustion of \(0.1023 \mathrm{g}\) of the compound in excess oxygen yielded \(0.2766 \mathrm{g} \mathrm{CO}_{2}\) and \(0.0991 \mathrm{g} \mathrm{H}_{2} \mathrm{O} .\) A sample of \(0.4831 \mathrm{g}\) of the compound was analyzed for nitrogen by the Dumas method (see Exercise 129 ). At \(\mathrm{STP}, 27.6 \mathrm{mL}\) of dry \(\mathrm{N}_{2}\) was obtained. In a third experiment, the density of the compound as a gas was found to be \(4.02 \mathrm{g} / \mathrm{L}\) at \(127^{\circ} \mathrm{C}\) and \(256\) torr. What are the empirical and molecular formulas of the compound?
A compressed gas cylinder contains \(1.00 \times 10^{3} \mathrm{g}\) argon gas. The pressure inside the cylinder is \(2050 .\) psi (pounds per square inch) at a temperature of \(18^{\circ} \mathrm{C}\). How much gas remains in the cylinder if the pressure is decreased to \(650 .\) psi at a temperature of \(26^{\circ} \mathrm{C} ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.