Chapter 8: Problem 25
Which noble gas has the smallest density at STP? Explain.
Chapter 8: Problem 25
Which noble gas has the smallest density at STP? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider two gases, \(A\) and \(B\), each in a \(1.0\) -\(\mathrm{L}\) container with both gases at the same temperature and pressure. The mass of gas \(A\) in the container is \(0.34\) \(\mathrm{g}\) and the mass of gas \(B\) in the container is \(0.48 \mathrm{g}\). a. Which gas sample has the most molecules present? Explain. b. Which gas sample has the largest average kinetic energy? Explain. c. Which gas sample has the fastest average velocity? Explain. d. How can the pressure in the two containers be equal to each other since the larger gas \(B\) molecules collide with the container walls more forcefully?
A chemist weighed out \(5.14 \mathrm{g}\) of a mixture containing unknown amounts of \(\mathrm{BaO}(s)\) and \(\mathrm{CaO}(s)\) and placed the sample in a \(1.50\) -\(\mathrm{L}\) flask containing \(\mathrm{CO}_{2}(g)\) at \(30.0^{\circ} \mathrm{C}\) and \(750 .\) torr. After the reaction to form \(\mathrm{BaCO}_{3}(s)\) and \(\mathrm{CaCO}_{3}(s)\) was completed, the pressure of \(\mathrm{CO}_{2}(g)\) remaining was \(230 .\) torr. Calculate the mass percentages of \(\mathrm{CaO}(s)\) and \(\mathrm{BaO}(s)\) in the mixture.
Calculate the pressure exerted by \(0.5000\) mole of \(\mathrm{N}_{2}\) in a \(1.0000-\mathrm{L}\) container at \(25.0^{\circ} \mathrm{C}\) a. using the ideal gas law. b. using the van der Waals equation. c. Compare the results.
A piece of solid carbon dioxide, with a mass of \(7.8 \mathrm{g},\) is placed in a \(4.0\)-\(\mathrm{L}\) otherwise empty container at \(27^{\circ} \mathrm{C}\). What is the pressure in the container after all the carbon dioxide vaporizes? If \(7.8 \mathrm{g},\) solid carbon dioxide were placed in the same container but it already contained air at \(740\) torr, what would be the partial pressure of carbon dioxide and the total pressure in the container after the carbon dioxide vaporizes?
At STP, \(1.0 \mathrm{L}\) \(Br\) \(_{2}\) reacts completely with \(3.0 \mathrm{L} \mathrm{F}_{2}\), producing \(2.0 \mathrm{L}\) of a product. What is the formula of the product? (All substances are gases.)
What do you think about this solution?
We value your feedback to improve our textbook solutions.