Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A bag of potato chips is packed and sealed in Los Angeles, California, and then shipped to Lake Tahoe, Nevada, during ski season. It is noticed that the volume of the bag of potato chips has increased upon its arrival in Lake Tahoe. What external conditions would most likely cause the volume increase?

Short Answer

Expert verified
The most likely external condition causing the volume increase in the bag of potato chips is the difference in altitude and consequent air pressure between Los Angeles and Lake Tahoe. Lower air pressure at higher altitudes, such as in Lake Tahoe, causes the gas inside the sealed container to expand, leading to a noticeable increase in volume.

Step by step solution

01

Analyze changes in temperature

Temperature can affect the volume of gases inside a sealed container. Typically, when the temperature of a gas increases, its volume also increases. We should compare the average temperatures in Los Angeles and Lake Tahoe to see if there is a significant difference that could have caused the volume increase.
02

Analyze changes in altitude

Altitude can affect air pressure, which in turn can affect the volume of gases in a sealed container. As we move higher in altitude, the air pressure decreases. Lake Tahoe is at a higher altitude than Los Angeles, so there should be a lower air pressure in Lake Tahoe.
03

Analyze changes in air pressure

Air pressure changes can directly affect the volume of a gas inside a sealed container. When external air pressure decreases, the gas inside the container will expand until it equalizes with the external pressure. We can consider the difference in air pressure between the two locations to determine if it's a likely cause for the volume increase.
04

Identifying the most likely cause

Based on our analysis, it's likely that the difference in altitude and consequent air pressure are the main external factors contributing to the increase in the volume of the bag of potato chips. Lower air pressure at higher altitudes causes the gas inside the sealed container to expand, leading to a noticeable increase in volume.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Nitrogen gas \(\left(\mathrm{N}_{2}\right)\) reacts with hydrogen gas \(\left(\mathrm{H}_{2}\right)\) to form ammonia gas \(\left(\mathrm{NH}_{3}\right) .\) You have nitrogen and hydrogen gases in a \(15.0\)-\(\mathrm{L}\) container fitted with a movable piston (the piston allows the container volume to change so as to keep the pressure constant inside the container). Initially the partial pressure of each reactant gas is \(1.00\) atm. Assume the temperature is constant and that the reaction goes to completion. a. Calculate the partial pressure of ammonia in the container after the reaction has reached completion. b. Calculate the volume of the container after the reaction has reached completion.

In 1897 the Swedish explorer Andreé tried to reach the North Pole in a balloon. The balloon was filled with hydrogen gas. The hydrogen gas was prepared from iron splints and diluted sulfuric acid. The reaction is $$\mathrm{Fe}(s)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \longrightarrow \mathrm{FeSO}_{4}(a q)+\mathrm{H}_{2}(g)$$ The volume of the balloon was \(4800 \mathrm{m}^{3}\) and the loss of hydrogen gas during filling was estimated at \(20 . \% .\) What mass of iron splints and \(98 \%\) (by mass) \(\mathrm{H}_{2} \mathrm{SO}_{4}\) were needed to ensure the complete filling of the balloon? Assume a temperature of \(0^{\circ} \mathrm{C},\) a pressure of \(1.0\) atm during filling, and \(100 \%\) yield.

The preparation of \(\mathrm{NO}_{2}(g)\) from \(\mathrm{N}_{2}(g)\) and \(\mathrm{O}_{2}(g)\) is an endothermic reaction: $$\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{NO}_{2}(g) \quad \text { (unbalanced) }$$ The enthalpy change of reaction for the balanced equation (with lowest whole-number coefficients) is \(\Delta H=67.7 \mathrm{kJ} .\) If \(2.50 \times\) \(10^{2} \mathrm{mL} \mathrm{N}_{2}(g)\) at \(100 .^{\circ} \mathrm{C}\) and \(3.50\) atm and \(4.50 \times 10^{2} \mathrm{mL} \mathrm{O}_{2}(g)\) at \(100 .^{\circ} \mathrm{C}\) and \(3.50\) atm are mixed, what amount of heat is necessary to synthesize the maximum yield of \(\mathrm{NO}_{2}(g) ?\)

In the "Méthode Champenoise," grape juice is fermented in a wine bottle to produce sparkling wine. The reaction is $$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q) \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q)+2 \mathrm{CO}_{2}(g)$$ Fermentation of \(750 .\) mL grape juice (density \(=1.0 \mathrm{g} / \mathrm{cm}^{3}\) ) is allowed to take place in a bottle with a total volume of \(825 \mathrm{mL}\) until \(12 \%\) by volume is ethanol \(\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) .\) Assuming that the \(\mathrm{CO}_{2}\) is insoluble in \(\mathrm{H}_{2} \mathrm{O}\) (actually, a wrong assumption), what would be the pressure of \(\mathrm{CO}_{2}\) inside the wine bottle at \(25^{\circ} \mathrm{C} ?\) (The density of ethanol is \(0.79 \mathrm{g} / \mathrm{cm}^{3} .\) )

Concentrated hydrogen peroxide solutions are explosively decomposed by traces of transition metal ions (such as Mn or Fe): $$2 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(i)+\mathrm{O}_{2}(g)$$ What volume of pure \(\mathbf{O}_{2}(g),\) collected at \(27^{\circ} \mathrm{C}\) and 746 torr, would be generated by decomposition of \(125 \mathrm{g}\) of a \(50.0 \%\) by mass hydrogen peroxide solution? Ignore any water vapor that may be present.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free