Chapter 8: Problem 155
Methane \(\left(\mathrm{CH}_{4}\right)\) gas flows into a combustion chamber at a rate of \(200 .\) L/min at \(1.50\) atm and ambient temperature. Air is added to the chamber at 1.00 atm and the same temperature, and the gases are ignited. a. To ensure complete combustion of \(\mathrm{CH}_{4}\) to \(\mathrm{CO}_{2}(g)\) and \(\mathrm{H}_{2} \mathrm{O}(g),\) three times as much oxygen as is necessary is reacted. Assuming air is \(21\) mole percent \(\mathrm{O}_{2}\) and \(79\) mole percent \(\mathrm{N}_{2}\), calculate the flow rate of air necessary to deliver the required amount of oxygen. b. Under the conditions in part a, combustion of methane was not complete as a mixture of \(\mathrm{CO}_{2}(g)\) and \(\mathrm{CO}(g)\) was produced. It was determined that \(95.0 \%\) of the carbon in the exhaust gas was present in \(\mathrm{CO}_{2}\). The remainder was present as carbon in \(\mathrm{CO}\). Calculate the composition of the exhaust gas in terms of mole fraction of \(\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{N}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}\). Assume \(\mathrm{CH}_{4}\) is completely reacted and \(\mathrm{N}_{2}\) is unreacted.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.