Chapter 7: Problem 24
Explain the advantages and disadvantages of hydrogen as an alternative fuel.
Chapter 7: Problem 24
Explain the advantages and disadvantages of hydrogen as an alternative fuel.
All the tools & learning materials you need for study success - in one app.
Get started for freeAs a system increases in volume, it absorbs \(52.5 \mathrm{J}\) of energy in the form of heat from the surroundings. The piston is working against a pressure of \(0.500 \mathrm{atm}\). The final volume of the system is \(58.0 \mathrm{L}\). What was the initial volume of the system if the internal energy of the system decreased by \(102.5 \mathrm{J} ?\)
Consider the dissolution of \(\mathrm{CaCl}_{2}\) : $$\mathrm{CaCl}_{2}(s) \longrightarrow \mathrm{Ca}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q) \quad \Delta H=-81.5 \mathrm{kJ}$$ An \(11.0-\mathrm{g}\) sample of \(\mathrm{CaCl}_{2}\) is dissolved in 125 g water, with both substances at \(25.0^{\circ} \mathrm{C}\). Calculate the final temperature of the solution assuming no heat loss to the surroundings and assuming the solution has a specific heat capacity of \(4.18 \mathrm{J} /^{\circ} \mathrm{C} \cdot \mathrm{g}\).
Explain why oceanfront areas generally have smaller temperature fluctuations than inland areas.
The specific heat capacity of silver is \(0.24 \mathrm{J} /^{\circ} \mathrm{C} \cdot \mathrm{g}\). a. Calculate the energy required to raise the temperature of \(150.0 \mathrm{g}\) Ag from \(273 \mathrm{K}\) to \(298 \mathrm{K}\). b. Calculate the energy required to raise the temperature of 1.0 mole of Ag by \(1.0^{\circ} \mathrm{C}\) (called the molar heat capacity of silver). c. It takes \(1.25 \mathrm{kJ}\) of energy to heat a sample of pure silver from \(12.0^{\circ} \mathrm{C}\) to \(15.2^{\circ} \mathrm{C}\). Calculate the mass of the sample silver.
Hydrogen gives off \(120 .\) J/g of energy when burned in oxygen, and methane gives off \(50 .\) J/g under the same circumstances. If a mixture of 5.0 g hydrogen and \(10 .\) g methane is burned, and the heat released is transferred to \(50.0 \mathrm{g}\) water at \(25.0^{\circ} \mathrm{C},\) what final temperature will be reached by the water?
What do you think about this solution?
We value your feedback to improve our textbook solutions.