Chapter 7: Problem 21
Why is it a good idea to rinse your thermos bottle with hot water before filling it with hot coffee?
Chapter 7: Problem 21
Why is it a good idea to rinse your thermos bottle with hot water before filling it with hot coffee?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the following reaction: $$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta H=-891 \mathrm{kJ}$$ Calculate the enthalpy change for each of the following cases: a. \(1.00 \mathrm{g}\) methane is burned in excess oxygen. b. \(1.00 \times 10^{3} \mathrm{L}\) methane gas at \(740 .\) torr and \(25^{\circ} \mathrm{C}\) are burned in excess oxygen. The density of \(\mathrm{CH}_{4}(g)\) at these conditions is \(0.639 \mathrm{g} / \mathrm{L}\).
Consider the reaction $$2 \mathrm{HCl}(a q)+\mathrm{Ba}(\mathrm{OH})_{2}(a q) \longrightarrow \mathrm{BaCl}_{2}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \Delta H=-118 \mathrm{kJ}$$ Calculate the heat when \(100.0 \mathrm{mL}\) of \(0.500 \mathrm{M}\) HCl is mixed with \(300.0 \mathrm{mL}\) of \(0.100 M \mathrm{Ba}(\mathrm{OH})_{2} .\) Assuming that the temperature of both solutions was initially \(25.0^{\circ} \mathrm{C}\) and that the final mixture has a mass of \(400.0 \mathrm{g}\) and a specific heat capacity of \(4.18 \mathrm{J} /^{\prime} \mathrm{C} \cdot \mathrm{g},\) calculate the final temperature of the mixture.
In a coffee-cup calorimeter, \(150.0 \mathrm{mL}\) of \(0.50 \mathrm{M}\) HCl is added to \(50.0 \mathrm{mL}\) of \(1.00 \mathrm{M} \mathrm{NaOH}\) to make \(200.0 \mathrm{g}\) solution at an initial temperature of \(48.2^{\circ} \mathrm{C}\). If the enthalpy of neutralization for the reaction between a strong acid and a strong base is \(-56 \mathrm{kJ} / \mathrm{mol},\) calculate the final temperature of the calorimeter contents. Assume the specific heat capacity of the solution is \(4.184 \mathrm{J} / \mathrm{g} \cdot^{\circ} \mathrm{C}\) and assume no heat loss to the surroundings.
Standard enthalpies of formation are relative values. What are \(\Delta H_{\mathrm{f}}^{\circ}\) values relative to?
Consider a mixture of air and gasoline vapor in a cylinder with a piston. The original volume is \(40 . \mathrm{cm}^{3} .\) If the combustion of this mixture releases \(950 .\) \(\mathrm{J}\) of energy, to what volume will the gases expand against a constant pressure of \(650 .\) torr if all the energy of combustion is converted into work to push back the piston?
What do you think about this solution?
We value your feedback to improve our textbook solutions.