Calculate the mass of chromium(III) chromate isolated
We have the balanced chemical equation and the percent yield. Now, we can use stoichiometry to find the mass of chromium(III) chromate isolated.
First, we need to find the limiting reactant. To do this, we use the moles of each reactant and the stoichiometry of the balanced chemical equation:
- Moles of ammonium chromate = volume × concentration = \(203\,\mathrm{mL} \times 0.307\,\mathrm{M} = 0.0623\,\mathrm{mol}\)
- Moles of chromium(III) nitrite = volume × concentration = \(137\,\mathrm{mL} \times 0.269\,\mathrm{M} = 0.0368\,\mathrm{mol}\)
Comparing moles of reactants given their stoichiometry:
\(0.0623\,\mathrm{mol}\,(NH_4)_2CrO_4 \times \frac{3\,\mathrm{mol}\,Cr(NO_2)_3}{2\,\mathrm{mol}\,(NH_4)_2CrO_4} \approx 0.0934\,\mathrm{mol}\,Cr(NO_2)_3\)
Since \(0.0368\,\mathrm{mol} < 0.0934\,\mathrm{mol}\), chromium(III) nitrite is the limiting reactant.
Next, we determine the moles of chromium(III) chromate that can be produced:
\(0.0368\,\mathrm{mol}\,Cr(NO_2)_3 \times \frac{1\,\mathrm{mol}\,Cr_2(CrO_4)_3}{3\,\mathrm{mol}\,Cr(NO_2)_3} \approx 0.0123\,\mathrm{mol}\,Cr_2(CrO_4)_3\)
Since the percent yield of the reaction is 88.0%, we need to calculate the actual moles of chromium(III) chromate produced:
\(0.0123\,\mathrm{mol} \times 0.880 = 0.0108\,\mathrm{mol}\,Cr_2(CrO_4)_3\)
Finally, we calculate the mass of chromium(III) chromate isolated:
mass = moles × molar mass
The molar mass of chromium(III) chromate = \(2\times 51.9961 + 3\times (51.9961 + 4\times 15.999) = 635.9748\,\mathrm{g/mol}\)
mass = \(0.0108\,\mathrm{mol} \times 635.9748\,\mathrm{g/mol} \approx 6.875\,\mathrm{g}\)
So, the mass of chromium(III) chromate isolated is approximately \(6.875\,\mathrm{g}\).