Chapter 5: Problem 33
What is the theoretical yield for a reaction, and how does this quantity depend on the limiting reactant?
Chapter 5: Problem 33
What is the theoretical yield for a reaction, and how does this quantity depend on the limiting reactant?
All the tools & learning materials you need for study success - in one app.
Get started for freeA compound contains only carbon, hydrogen, nitrogen, and oxygen. Combustion of 0.157 g of the compound produced \(0.213 \mathrm{g} \mathrm{CO}_{2}\) and \(0.0310 \mathrm{g} \mathrm{H}_{2} \mathrm{O} .\) In another experiment, it is found that 0.103 g of the compound produces \(0.0230 \mathrm{g} \mathrm{NH}_{3}\) What is the empirical formula of the compound? Hint: Combustion involves reacting with excess \(\mathrm{O}_{2}\). Assume that all the carbon ends up in \(\mathrm{CO}_{2}\) and all the hydrogen ends up in \(\mathrm{H}_{2} \mathrm{O}\). Also assume that all the nitrogen ends up in the \(\mathrm{NH}_{3}\) in the second experiment.
The reusable booster rockets of the U.S. space shuttle employ a mixture of aluminum and ammonium perchlorate for fuel. A possible equation for this reaction is $$\begin{aligned}3 \mathrm{Al}(s)+3 \mathrm{NH}_{4} \mathrm{ClO}_{4}(s) & \longrightarrow \\ \mathrm{Al}_{2} \mathrm{O}_{3}(s)+& \mathrm{AlCl}_{3}(s)+3 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)\end{aligned}$$ What mass of \(\mathrm{NH}_{4} \mathrm{ClO}_{4}\) should be used in the fuel mixture for every kilogram of Al?
An ionic compound \(\mathrm{MX}_{3}\) is prepared according to the following unbalanced chemical equation. $$\mathbf{M}+\mathbf{X}_{2} \longrightarrow \mathbf{M X}_{3}$$ A \(0.105-\mathrm{g}\) sample of \(\mathrm{X}_{2}\) contains \(8.92 \times 10^{20}\) molecules. The compound \(\mathrm{MX}_{3}\) consists of \(54.47 \%\) X by mass. What are the identities of \(\mathrm{M}\) and \(\mathrm{X}\), and what is the correct name for \(\mathrm{MX}_{3} ?\) Starting with 1.00 g each of \(M\) and \(X_{2}\), what mass of \(M X_{3}\) can be prepared?
Give the balanced equation for each of the following chemical reactions: a. Glucose \(\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)\) reacts with oxygen gas to produce gaseous carbon dioxide and water vapor. b. Solid iron(III) sulfide reacts with gaseous hydrogen chloride to form solid iron(III) chloride and hydrogen sulfide gas. c. Carbon disulfide liquid reacts with ammonia gas to produce hydrogen sulfide gas and solid ammonium thiocyanate \(\left(\mathrm{NH}_{4} \mathrm{SCN}\right).\)
Tetrodotoxin is a toxic chemical found in fugu pufferfish, a popular but rare delicacy in Japan. This compound has an LD\(_{50}\) (the amount of substance that is lethal to \(50 . \%\) of a population sample) of \(10 . \mu g\) per \(\mathrm{kg}\) of body mass. Tetrodotoxin is \(41.38 \%\) carbon by mass, \(13.16\%\) nitrogen by mass, and \(5.37\%\) hydrogen by mass, with the remaining amount consisting of oxygen. What is the empirical formula of tetrodotoxin? If three molecules of tetrodotoxin have a mass of \(1.59 \times 10^{-21} \mathrm{g},\) what is the molecular formula of tetrodotoxin? What number of molecules of tetrodotoxin would be the \(\mathrm{LD}_{50}\) dosage for a person weighing 165 lb?
What do you think about this solution?
We value your feedback to improve our textbook solutions.