Chapter 5: Problem 177
Ammonia reacts with \(\mathrm{O}_{2}\) to form either \(\mathrm{NO}(g)\) or \(\mathrm{NO}_{2}(g)\) according to these unbalanced equations: $$\begin{array}{l}\mathrm{NH}_{3}(g)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \\\\\mathrm{NH}_{3}(g)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)\end{array}$$ In a certain experiment 2.00 moles of \(\mathrm{NH}_{3}(g)\) and 10.00 moles of \(\mathbf{O}_{2}(g)\) are contained in a closed flask. After the reaction is complete, 6.75 moles of \(\mathbf{O}_{2}(g)\) remains. Calculate the number of moles of \(\mathrm{NO}(g)\) in the product mixture: (Hint: You cannot do this problem by adding the balanced equations because you cannot assume that the two reactions will occur with equal probability.)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.