Chapter 4: Problem 51
Why must all six atoms in \(\mathrm{C}_{2} \mathrm{H}_{4}\) lie in the same plane?
Chapter 4: Problem 51
Why must all six atoms in \(\mathrm{C}_{2} \mathrm{H}_{4}\) lie in the same plane?
All the tools & learning materials you need for study success - in one app.
Get started for freeBond energy has been defined in the text as the amount of energy required to break a chemical bond, so we have come to think of the addition of energy as breaking bonds. However, in some cases the addition of energy can cause the formation of bonds. For example, in a sample of helium gas subjected to a high-energy source, some He_ molecules exist momentarily and then dissociate. Use MO theory (and diagrams) to explain why \(\mathrm{He}_{2}\) molecules can come to exist and why they dissociate.
Predict the molecular structure, bond angles, and polarity (has a net dipole moment or has no net dipole moment) for each of the following compounds. a. \(\mathrm{SeCl}_{4}\) b. \(\mathrm{SF}_{2}\) c. \(\mathrm{KrF}_{4}\) d. \(C B r_{4}\) e. \(\mathrm{IF}_{3}\) f. \(\mathrm{ClF}_{5}\)
Using the molecular orbital model, write electron configurations for the following diatomic species and calculate the bond orders. Which ones are paramagnetic? Place the species in order of increasing bond length and bond energy. a. \(\mathrm{CN}^{+}\) b. CN c. \(\mathrm{CN}^{-}\)
Arrange the following molecules from most to least polar and explain your order: \(\mathrm{CH}_{4}, \mathrm{CF}_{2} \mathrm{Cl}_{2}, \mathrm{CF}_{2} \mathrm{H}_{2}, \mathrm{CCl}_{4},\) and \(\mathrm{CCl}_{2} \mathrm{H}_{2}\).
Consider the following molecular orbitals formed from the combination of two hydrogen \(1 s\) orbitals: a. Which is the bonding molecular orbital and which is the antibonding molecular orbital? Explain how you can tell by looking at their shapes. b. Which of the two molecular orbitals is lower in energy? Why is this true?
What do you think about this solution?
We value your feedback to improve our textbook solutions.