Chapter 3: Problem 104
Nitrous oxide \(\left(\mathrm{N}_{2} \mathrm{O}\right)\) has three possible Lewis structures: $$\therefore N=N=O^{\cdot} \leftrightarrow: N \equiv N-\vec{O}: \longleftrightarrow: N-N \equiv 0$$ Given the following bond lengths, $$\begin{aligned} &\mathrm{N}-\mathrm{N} \quad 167 \mathrm{pm} \quad \mathrm{N}=\mathrm{O} \quad 115 \mathrm{pm}\\\ &\mathrm{N}=\mathrm{N} \quad 120 \mathrm{pm} \quad \mathrm{N}-\mathrm{O} \quad 147 \mathrm{pm}\\\ &\mathrm{N} \equiv \mathrm{N} \quad 110 \mathrm{pm} \end{aligned}$$ rationalize the observations that the \(\mathrm{N}-\mathrm{N}\) bond length in \(\mathrm{N}_{2} \mathrm{O}\) is \(112 \mathrm{pm}\) and that the \(\mathrm{N}-\mathrm{O}\) bond length is \(119 \mathrm{pm}\). Assign formal charges to the resonance structures for \(\mathrm{N}_{2} \mathrm{O}\). Can you eliminate any of the resonance structures on the basis of formal charges? Is this consistent with observation?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.