Chapter 20: Problem 96
Sketch a \(d\) -orbital energy diagram for the following. a. a linear complex ion with ligands on the \(x\) axis b. a linear complex ion with ligands on the \(y\) axis
Chapter 20: Problem 96
Sketch a \(d\) -orbital energy diagram for the following. a. a linear complex ion with ligands on the \(x\) axis b. a linear complex ion with ligands on the \(y\) axis
All the tools & learning materials you need for study success - in one app.
Get started for free\(\mathrm{CoCl}_{4}^{2-}\) forms a tetrahedral complex ion and \(\mathrm{Co}(\mathrm{CN})_{6}^{3-}\) forms an octahedral complex ion. What is wrong about the following statements concerning each complex ion and the \(d\) orbital splitting diagrams? a. \(\mathrm{CoCl}_{4}^{2-}\) is an example of a strong-field case having two unpaired electrons. b. Because \(\mathrm{CN}^{-}\) is a weak-field ligand, \(\mathrm{Co}(\mathrm{CN})_{6}^{3-}\) will be a low-spin case having four unpaired electrons.
Molybdenum is obtained as a by-product of copper mining or is mined directly (primary deposits are in the Rocky Mountains in Colorado). In both cases it is obtained as \(\mathrm{MoS}_{2},\) which is then converted to \(\mathrm{MoO}_{3}\). The \(\mathrm{MoO}_{3}\) can be used directly in the production of stainless steel for high-speed tools (which accounts for about \(85 \%\) of the molybdenum used). Molybdenum can be purified by dissolving \(\mathrm{MoO}_{3}\) in aqueous ammonia and crystallizing ammonium molybdate. Depending on conditions, either \(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}\) or \(\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}\) is obtained. a. Give names for \(\mathrm{MoS}_{2}\) and \(\mathrm{MoO}_{3}\) b. What is the oxidation state of Mo in each of the compounds mentioned above?
A certain first-row transition metal ion forms many different colored solutions. When four coordination compounds of this metal, each having the same coordination number, are dissolved in water, the colors of the solutions are red, yellow, green, and blue. Further experiments reveal that two of the complex ions are paramagnetic with four unpaired electrons and the other two are diamagnetic. What can be deduced from this information about the four coordination compounds?
Amino acids can act as ligands toward transition metal ions. The simplest amino acid is glycine \(\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right) .\) Draw a structure of the glycinate anion \(\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}\right)\) acting as a bidentate ligand. Draw the structural isomers of the square planar complex \(\mathrm{Cu}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)_{2}\)
How many unpaired electrons are in the following complex ions? a. \(\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}^{2+}\) (low-spin case) b. \(\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}\) c. \(\mathrm{V}(\mathrm{en})_{3}^{3+}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.