Chapter 20: Problem 18
Almost all metals in nature are found as ionic compounds in ores instead of being in the pure state. Why? What must be done to a sample of ore to obtain a metal substance that has desirable properties?
Chapter 20: Problem 18
Almost all metals in nature are found as ionic compounds in ores instead of being in the pure state. Why? What must be done to a sample of ore to obtain a metal substance that has desirable properties?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe complex ion \(\mathrm{Ru}\) (phen) \(_{3}^{2+}\) has been used as a probe for the structure of DNA. (Phen is a bidentate ligand.) a. What type of isomerism is found in \(\mathrm{Ru}(\text { phen })_{3}^{2+} ?\) b. \(\mathrm{Ru}(\text { phen })_{3}^{2+}\) is diamagnetic (as are all complex ions of \(\mathrm{Ru}^{2+}\) ). Draw the crystal field diagram for the \(d\) orbitals in this complex ion.$
The \(\mathrm{CrF}_{6}^{4-}\) ion is known to have four unpaired electrons. Does the \(\mathrm{F}^{-}\) ligand produce a strong or weak field?
A metal ion in a high-spin octahedral complex has two more unpaired electrons than the same ion does in a low-spin octahedral complex. Name some possible metal ions for which this would be true.
Give formulas for the following complex ions. a. tetrachloroferrate(III) ion b. pentaammineaquaruthenium(III) ion c. tetracarbonyldihydroxochromium(III) ion d. amminetrichloroplatinate(II) ion
How many bonds could each of the following chelating ligands form with a metal ion? a. acetylacetone (acacH), a common ligand in organometal:atalysts: b. diethylenetriamine, used in a variety of industrial processes: $$ \mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2} $$ c. salen, a common ligand for chiral organometallic catalysts: d. porphine, often used in supermolecular chemistry as well as catalysis; biologically, porphine is the basis for many different types of porphyrin- containing proteins, including heme proteins:
What do you think about this solution?
We value your feedback to improve our textbook solutions.