Chapter 2: Problem 71
What are the possible values for the quantum numbers \(n, \ell\) and \(m_{\ell} ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 2: Problem 71
What are the possible values for the quantum numbers \(n, \ell\) and \(m_{\ell} ?\)
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeAnswer the following questions based on the given electron configurations and identify the elements. a. Arrange these atoms in order of increasing size: \([\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{6} ;[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{1} ;[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{3}\). b. Arrange these atoms in order of decreasing first ionization energy: \([\mathrm{Ne}] 3 s^{2} 3 p^{5} ;[\mathrm{Ar}] 4 s^{2} 3 d^{10} 4 p^{3} ;[\mathrm{Ar}] 4 s^{2} 3 d^{10} 4 p^{5}\).
Ionization energy is the energy required to remove an electron from an atom in the gas phase. The ionization energy of gold is \(890.1 \mathrm{kJ} / \mathrm{mol} .\) Is light with a wavelength of \(225 \mathrm{nm}\) capable of ionizing a gold atom (removing an electron) in the gas phase? ( 1 mol gold \(=6.022 \times 10^{23}\) atoms gold.)
An unknown element is a nonmetal and has a valence electron configuration of \(n s^{2} n p^{4}\). a. How many valence electrons does this element have? b. What are some possible identities for this element? c. What is the formula of the compound this element would form with potassium? d. Would this element have a larger or smaller radius than barium? e. Would this element have a greater or smaller ionization energy than fluorine?
The electron affinities of the elements from aluminum to chlorine are \(-44,-120,-74,-200.4,\) and \(-384.7 \mathrm{kJ} / \mathrm{mol},\) respectively. Rationalize the trend in these values.
Photogray lenses incorporate small amounts of silver chloride in the glass of the lens. When light hits the AgCl particles, the following reaction occurs: $$ \operatorname{AgCl} \stackrel{h v}{\longrightarrow} \mathrm{Ag}+\mathrm{Cl} $$ The silver metal that is formed causes the lenses to darken. The energy change for this reaction is \(3.10 \times 10^{2} \mathrm{kJ} / \mathrm{mol} .\) Assuming all this energy must be supplied by light, what is the maximum wavelength of light that can cause this reaction?
What do you think about this solution?
We value your feedback to improve our textbook solutions.