Chapter 2: Problem 32
The changes in electron affinity as one goes down a group in the periodic table are not nearly as large as the variations in ionization energies. Why?
Chapter 2: Problem 32
The changes in electron affinity as one goes down a group in the periodic table are not nearly as large as the variations in ionization energies. Why?
All the tools & learning materials you need for study success - in one app.
Get started for freeWhich has the more negative electron affinity, the oxygen atom or the \(\mathrm{O}^{-}\) ion? Explain your answer.
Identify the following elements. a. An excited state of this element has the electron configuration \(1 s^{2} 2 s^{2} 2 p^{5} 3 s^{1}\). b. The ground-state electron configuration is \([\mathrm{Ne}] 3 s^{2} 3 p^{4}\). c. An excited state of this element has the electron configuration \([\mathrm{Kr}] 5 s^{2} 4 d^{6} 5 p^{2} 6 s^{1}\). d. The ground-state electron configuration contains three unpaired \(6 p\) electrons.
Which of the following sets of quantum numbers are not allowed in the hydrogen atom? For the sets of quantum numbers that are incorrect, state what is wrong in each set. a. \(n=3, \ell=2, m_{c}=2\) b. \(n=4, \ell=3, m_{\ell}=4\) c. \(n=0, \ell=0, m_{\ell}=0\) d. \(n=2, \ell=-1, m_{c}=1\)
In the second row of the periodic table, \(\mathrm{Be}, \mathrm{N},\) and \(\mathrm{Ne}\) all have positive (unfavorable) electron affinities, whereas the other second-row elements have negative (favorable) electron affinities. Rationalize why Be, \(N,\) and Ne have unfavorable electron affinities.
A carbon-oxygen double bond in a certain organic molecule absorbs radiation that has a frequency of \(6.0 \times 10^{13} \mathrm{s}^{-1}\). a. What is the wavelength of this radiation? b. To what region of the spectrum does this radiation belong? c. What is the energy of this radiation per photon? d. A carbon-oxygen bond in a different molecule absorbs radiation with frequency equal to \(5.4 \times 10^{13} \mathrm{s}^{-1} .\) Is this radiation more or less energetic?
What do you think about this solution?
We value your feedback to improve our textbook solutions.