Chapter 2: Problem 22
Describe briefly why the study of electromagnetic radiation has been important to our understanding of the arrangement of electrons in atoms.
Chapter 2: Problem 22
Describe briefly why the study of electromagnetic radiation has been important to our understanding of the arrangement of electrons in atoms.
All the tools & learning materials you need for study success - in one app.
Get started for freePhotogray lenses incorporate small amounts of silver chloride in the glass of the lens. When light hits the AgCl particles, the following reaction occurs: $$ \operatorname{AgCl} \stackrel{h v}{\longrightarrow} \mathrm{Ag}+\mathrm{Cl} $$ The silver metal that is formed causes the lenses to darken. The energy change for this reaction is \(3.10 \times 10^{2} \mathrm{kJ} / \mathrm{mol} .\) Assuming all this energy must be supplied by light, what is the maximum wavelength of light that can cause this reaction?
As the weapons officer aboard the Starship Chemistry, it is your duty to configure a photon torpedo to remove an electron from the outer hull of an enemy vessel. You know that the work function (the binding energy of the electron) of the hull of the enemy ship is \(7.52 \times 10^{-19} \mathrm{J}\) a. What wavelength does your photon torpedo need to be to eject an electron? b. You find an extra photon torpedo with a wavelength of \(259 \mathrm{nm}\) and fire it at the enemy vessel. Does this photon torpedo do any damage to the ship (does it eject an electron)? c. If the hull of the enemy vessel is made of the element with an electron configuration of \([\mathrm{Ar}] 4 s^{1} 3 d^{10},\) what metal is this?
A certain oxygen atom has the electron configuration \(1 s^{2} 2 s^{2} 2 p_{x}^{2} 2 p_{y}^{2} .\) How many unpaired electrons are present? Is this an excited state of oxygen? In going from this state to the ground state, would energy be released or absorbed?
Which has the more negative electron affinity, the oxygen atom or the \(\mathrm{O}^{-}\) ion? Explain your answer.
The four most abundant elements by mass in the human body are oxygen, carbon, hydrogen, and nitrogen. These four elements make up about \(96 \%\) of the human body. The next four most abundant elements are calcium, phosphorus, magnesium, and potassium. Excluding hydrogen, which of these elements would have the smallest size? largest size? smallest first ionization energy? largest first ionization energy?
What do you think about this solution?
We value your feedback to improve our textbook solutions.