Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In most compounds, the solid phase is denser than the liquid phase. Why isn't this true for water?

Short Answer

Expert verified
Water is an exception to the general rule that the solid phase is denser than the liquid phase due to the hydrogen bonds in its solid form, ice. In ice, water molecules form a stable, hexagonal lattice structure that forces the molecules to be spread out further. This increases the volume per mass, resulting in a lower density for ice compared to liquid water. In contrast, the liquid phase has weak hydrogen bonds that constantly form and break, leading to a relatively large volume and higher density.

Step by step solution

01

Density is a measure of mass per unit volume. It can be calculated using the formula: \[ Density = \frac{Mass}{Volume} \] The higher the mass of the particles and the closer the particles are together, the denser the substance. We will now discuss how the arrangement of water molecules differs between the solid and liquid phases, and how this affects density. #Step 2: The structure of water molecules in liquid form#

In the liquid phase, water molecules are in continuous motion and have weak hydrogen bonds between them. These hydrogen bonds are constantly forming and breaking as the molecules interact. This results in a relatively large volume, which affects the overall density. #Step 3: The structure of water molecules in solid form#
02

When water molecules are cooled to solid phase (ice), they form a stable, hexagonal lattice structure due to the hydrogen bonding between the molecules. This structure forces the water molecules to be spread out further, resulting in a larger volume per mass. Therefore, although the mass of the water molecules remains the same, the volume increases, leading to a decrease in the density of ice compared to liquid water. #Step 4: Conclusion#

In most compounds, the solid phase is denser than the liquid phase because the particles are more closely packed together. However, water is an exception because the hydrogen bonds in its solid form (ice) create a hexagonal lattice structure that results in a larger volume per mass. This means that ice is less dense than liquid water, causing it to float when placed in water.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

There is evidence that radon reacts with fluorine to form compounds similar to those formed by xenon and fluorine. Predict the formulas of these \(\operatorname{RnF}_{x}\) compounds. Why is the chemistry of radon difficult to study?

The compound \(\mathrm{Pb}_{3} \mathrm{O}_{4}\) (red lead) contains a mixture of lead(II) and lead(IV) oxidation states. What is the mole ratio of lead(II) to lead(IV) in \(\mathrm{Pb}_{3} \mathrm{O}_{4} ?\)

Many structures of phosphorus-containing compounds are drawn with some \(P=O\) bonds. These bonds are not the typical \(\pi\) bonds we've considered, which involve the overlap of two \(p\) orbitals. Instead, they result from the overlap of a \(d\) orbital on the phosphorus atom with a \(p\) orbital on oxygen. This type of \(\pi\) bonding is sometimes used as an explanation for why \(\mathrm{H}_{3} \mathrm{PO}_{3}\) has the first structure below rather than the second:Draw a picture showing how a \(d\) orbital and a \(p\) orbital overlap to form a \(\pi\) bond.

The atmosphere contains \(9.0 \times 10^{-6 \%}\) Xe by volume at \(1.0 \mathrm{~atm}\) and \(25^{\circ} \mathrm{C}\) a. Calculate the mass of Xe in a room \(7.26 \mathrm{~m}\) by \(8.80 \mathrm{~m}\) by \(5.67 \mathrm{~m}\) b. A typical person takes in about \(2 \mathrm{~L}\) of air during a breath. How many Xe atoms are inhaled in each breath?

While selenic acid has the formula \(\mathrm{H}_{2} \mathrm{SeO}_{4}\) and thus is directly related to sulfuric acid, telluric acid is best visualized as \(\mathrm{H}_{6} \mathrm{TeO}_{6}\) or \(\mathrm{Te}(\mathrm{OH})_{6}\) a. What is the oxidation state of tellurium in \(\operatorname{Te}(\mathrm{OH})_{6} ?\) b. Despite its structural differences with sulfuric and selenic acid, telluric acid is a diprotic acid with \(\mathrm{p} K_{\mathrm{a}_{1}}=7.68\) and \(\mathrm{p} K_{\mathrm{a}_{2}}=11.29 .\) Telluric acid can be prepared by hydrolysis of tellurium hexafluoride according to the equation $$\operatorname{TeF}_{6}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) \longrightarrow\operatorname{Te}(\mathrm{OH})_{6}(a q)+6 \mathrm{HF}(a q)$$ Tellurium hexafluoride can be prepared by the reaction of elemental tellurium with fluorine gas:$$\operatorname{Te}(s)+3 \mathrm{F}_{2}(g) \longrightarrow \operatorname{Te} \mathrm{F}_{6}(g)$$.If a cubic block of tellurium (density \(=6.240 \mathrm{g} / \mathrm{cm}^{3}\) ) measuring \(0.545 \mathrm{cm}\) on edge is allowed to react with 2.34 L fluorine gas at 1.06 atm and \(25^{\circ} \mathrm{C}\), what is the \(\mathrm{pH}\) of a solution of \(\mathrm{Te}(\mathrm{OH})_{6}\) formed by dissolving the isolated \(\operatorname{Te} \mathrm{F}_{6}(g)\) in \(115 \mathrm{mL}\) solution? Assume \(100 \%\) yield in all reactions.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free