Chapter 19: Problem 108
Although nitrogen trifluoride (NF \(_{3}\) ) is a thermally stable compound, nitrogen triodide \(\left(\mathrm{NI}_{3}\right)\) is known to be a highly explosive material. \(\mathrm{NI}_{3}\) can be synthesized according to the equation $$\mathrm{BN}(s)+3 \mathrm{IF}(g) \longrightarrow \mathrm{BF}_{3}(g)+\mathrm{NI}_{3}(g)$$. a. What is the enthalpy of formation for \(\mathrm{NI}_{3}(s)\) given the enthalpy of reaction \((-307 \mathrm{kJ})\) and the enthalpies of formation for \(\mathrm{BN}(s)(-254 \mathrm{kJ} / \mathrm{mol}), \operatorname{IF}(g)(-96 \mathrm{kJ} / \mathrm{mol}),\) and \(\mathrm{BF}_{3}(g)(-1136 \mathrm{kJ} / \mathrm{mol}) ?\) b. It is reported that when the synthesis of \(\mathrm{NI}_{3}\) is conducted using 4 moles of IF for every 1 mole of BN, one of the by-products isolated is \(\left[\mathrm{IF}_{2}\right]^{+}\left[\mathrm{BF}_{4}\right]^{-} .\) What are the molecular geometries of the species in this by-product? What are the hybridizations of the central atoms in each species in the by-product?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.