Chapter 18: Problem 50
The easiest fusion reaction to initiate is $$\frac{2}{1} \mathrm{H}+\frac{3}{1} \mathrm{H} \longrightarrow_{2}^{4} \mathrm{He}+\frac{1}{0} \mathrm{n}$$ Calculate the energy released per \(\frac{4}{2} \mathrm{He}\) nucleus produced and per mole of \(^{4}_{2}\) He produced. The atomic masses are \(\frac{2}{1} \mathrm{H}\) \(2.01410 \mathrm{u} ; \frac{3}{1} \mathrm{H}, 3.01605 \mathrm{u} ;\) and \(\frac{4}{2} \mathrm{He}, 4.00260 \mathrm{u} .\) The masses of the electron and neutron are \(5.4858 \times 10^{-4} \mathrm{u}\) and \(1.00866 \mathrm{u}\) respectively.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.