Chapter 18: Problem 10
A recent study concluded that any amount of radiation exposure can cause biological damage. Explain the differences between the two models of radiation damage, the linear model and the threshold model.
Chapter 18: Problem 10
A recent study concluded that any amount of radiation exposure can cause biological damage. Explain the differences between the two models of radiation damage, the linear model and the threshold model.
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite an equation describing the radioactive decay of each of the following nuclides. (The particle produced is shown in parentheses, except for electron capture, where an electron is a reactant.) a. \(\frac{3}{1} \mathrm{H}(\beta)\) b. \(\frac{8}{3} L i(\beta \text { followed by } \alpha)\) c. \(^{7}_{4}\) Be (electron capture)d. \(^{8}_{5} B\) (positron)
A rock contains \(0.688 \mathrm{mg}^{206} \mathrm{Pb}\) for every \(1.000 \mathrm{mg}\) \(^{238} \mathrm{U}\) present Assuming that no lead was originally present, that all the \(^{206} \mathrm{Pb}\) formed over the years has remained in the rock, and that the number of nuclides in intermediate stages of decay between \(^{238} \mathrm{U}\) and \(^{206} \mathrm{Pb}\) is negligible, calculate the age of the \(\text { rock. For }^{238} \mathbf{U}, t_{1 / 2}=4.5 \times 10^{9} \text { years. }\)
Uranium- 235 undergoes many different fission reactions. For one such reaction, when \(^{235} \mathrm{U}\) is struck with a neutron, \(^{144} \mathrm{Ce}\) and \(^{90}\) Sr are produced along with some neutrons and electrons. How many neutrons and \(\beta\) -particles are produced in this fission reaction?
There is a trend in the United States toward using coal-fired power plants to generate electricity rather than building new nuclear fission power plants. Is the use of coal-fired power plants without risk? Make a list of the risks to society from the use of each type of power plant.
Strontium-90 and radon-222 both pose serious health risks. \(^{90}\) \(\mathrm{Sr}\) decays by \(\beta\) -particle production and has a relatively long half-life (28.9 years). Radon-222 decays by \(\alpha\) -particle production and has a relatively short half-life (3.82 days). Explain why each decay process poses health risks.
What do you think about this solution?
We value your feedback to improve our textbook solutions.